{"title":"基于单设备 RSSI 和 DOA 测量的 BLE 设备定位","authors":"Harsha Kandula, Veena Chidurala, Yuan Cao, Xinrong Li","doi":"10.3390/network4020010","DOIUrl":null,"url":null,"abstract":"Indoor location services often use Bluetooth low energy (BLE) devices for their low energy consumption and easy implementation. Applications like device monitoring, ranging, and asset tracking utilize the received signal strength (RSS) of the BLE signal to estimate the proximity of a device from the receiver. However, in multipath environments, RSS-based solutions may not provide an accurate estimation. In such environments, receivers with antenna arrays are used to calculate the difference in time of flight (ToF) and therefore calculate the direction of arrival (DoA) of the Bluetooth signal. Other techniques like triangulation have also been used, such as having multiple transmitters or receivers as a network of sensors. To find a lost item, devices like Tile© use an onboard beeper to notify users of their presence. In this paper, we present a system that uses a single-measurement device and describe the method of measurement to estimate the location of a BLE device using RSS. A BLE device is configured as an Eddystone beacon for periodic transmission of advertising packets with RSS information. We developed a smartphone application to read RSS information from the beacon, designed an algorithm to estimate the DoA, and used the phone’s internal sensors to evaluate the DoA with respect to true north. The proposed measurement method allows for asset tracking by iterative measurements that provide the direction of the beacon and take the user closer at every step. The receiver application is easily deployable on a smartphone, and the algorithm provides direction of the beacon within a 30° range, as suggested by the provided results.","PeriodicalId":19145,"journal":{"name":"Network","volume":"87 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Localization of a BLE Device Based on Single-Device RSSI and DOA Measurements\",\"authors\":\"Harsha Kandula, Veena Chidurala, Yuan Cao, Xinrong Li\",\"doi\":\"10.3390/network4020010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indoor location services often use Bluetooth low energy (BLE) devices for their low energy consumption and easy implementation. Applications like device monitoring, ranging, and asset tracking utilize the received signal strength (RSS) of the BLE signal to estimate the proximity of a device from the receiver. However, in multipath environments, RSS-based solutions may not provide an accurate estimation. In such environments, receivers with antenna arrays are used to calculate the difference in time of flight (ToF) and therefore calculate the direction of arrival (DoA) of the Bluetooth signal. Other techniques like triangulation have also been used, such as having multiple transmitters or receivers as a network of sensors. To find a lost item, devices like Tile© use an onboard beeper to notify users of their presence. In this paper, we present a system that uses a single-measurement device and describe the method of measurement to estimate the location of a BLE device using RSS. A BLE device is configured as an Eddystone beacon for periodic transmission of advertising packets with RSS information. We developed a smartphone application to read RSS information from the beacon, designed an algorithm to estimate the DoA, and used the phone’s internal sensors to evaluate the DoA with respect to true north. The proposed measurement method allows for asset tracking by iterative measurements that provide the direction of the beacon and take the user closer at every step. The receiver application is easily deployable on a smartphone, and the algorithm provides direction of the beacon within a 30° range, as suggested by the provided results.\",\"PeriodicalId\":19145,\"journal\":{\"name\":\"Network\",\"volume\":\"87 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/network4020010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/network4020010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Localization of a BLE Device Based on Single-Device RSSI and DOA Measurements
Indoor location services often use Bluetooth low energy (BLE) devices for their low energy consumption and easy implementation. Applications like device monitoring, ranging, and asset tracking utilize the received signal strength (RSS) of the BLE signal to estimate the proximity of a device from the receiver. However, in multipath environments, RSS-based solutions may not provide an accurate estimation. In such environments, receivers with antenna arrays are used to calculate the difference in time of flight (ToF) and therefore calculate the direction of arrival (DoA) of the Bluetooth signal. Other techniques like triangulation have also been used, such as having multiple transmitters or receivers as a network of sensors. To find a lost item, devices like Tile© use an onboard beeper to notify users of their presence. In this paper, we present a system that uses a single-measurement device and describe the method of measurement to estimate the location of a BLE device using RSS. A BLE device is configured as an Eddystone beacon for periodic transmission of advertising packets with RSS information. We developed a smartphone application to read RSS information from the beacon, designed an algorithm to estimate the DoA, and used the phone’s internal sensors to evaluate the DoA with respect to true north. The proposed measurement method allows for asset tracking by iterative measurements that provide the direction of the beacon and take the user closer at every step. The receiver application is easily deployable on a smartphone, and the algorithm provides direction of the beacon within a 30° range, as suggested by the provided results.