1.32Ga火山岩喷发引发的碳释放及其对环境的潜在影响

Chaokun Zhang, Wei Tian, Yanxin He, Mingyue Gong, Shun Li
{"title":"1.32Ga火山岩喷发引发的碳释放及其对环境的潜在影响","authors":"Chaokun Zhang, Wei Tian, Yanxin He, Mingyue Gong, Shun Li","doi":"10.3389/feart.2024.1368342","DOIUrl":null,"url":null,"abstract":"Magmatic activity is one of the important pathways for the delivery of deep Earth carbon to the surface. The massive carbon release in this process can have significant impacts on atmospheric-oceanic environment. Previous studies have done a lot of work on the relationship between Phanerozoic magmatic activity and carbon release, but there is relatively limited attention has been given to investigating the association between Precambrian magmatic activity and carbon release. The Yanliao Large Igneous Province at 1.32 Ga exhibits extensive development of sills, and the reaction between sills and surrounding rocks triggers the release of carbon. Simultaneously, the magmatic activity during this period is considered as the final response to the breakup of the Columbia supercontinent, coinciding with the occurrence of the Mesoproterozoic Oxygenation Event To explore the connection between this magmatic activity and global carbon cycling, environmental changes and planetary evolution, nine representative stratigraphic columns are selected from the Yanliao area. We use the SILLi 1.0 1D model by utilizing the one-dimensional finite element method (FEM) to simulate and estimate the amount of carbon release triggered by sill emplacement. The simulation results indicate that the emplacement of sills increased the surrounding rock temperature and vitrinite reflectance, leading to a decrease in the total organic carbon (TOC) content. A large amount of organic carbon and inorganic carbon was released, which was initiated by the reaction between sills and surrounding rocks, with a total carbon release up to 1.24 × 1013 tons. The estimated CO2 equivalent released during this magma activity episode is expected to be greater than 4.58 × 1013. In Mesoproterozoic strata, the emplacement of sills activates carbon within the lithosphere could have implications for the global environment. Further work needs to be done in other ancient cratons that possess Lower Riphean strata to find additional evidence of the impact of this magmatic event on the Earth system. From this study, it is evident that magmatic activity during the Precambrian period could promote the activation of carbon in crustal sediments and influence global environment, which can a reference for people to understand the planetary evolution process.","PeriodicalId":505744,"journal":{"name":"Frontiers in Earth Science","volume":"93 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The carbon release triggered by 1.32 Ga sill emplacement and its potential environmental implications\",\"authors\":\"Chaokun Zhang, Wei Tian, Yanxin He, Mingyue Gong, Shun Li\",\"doi\":\"10.3389/feart.2024.1368342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magmatic activity is one of the important pathways for the delivery of deep Earth carbon to the surface. The massive carbon release in this process can have significant impacts on atmospheric-oceanic environment. Previous studies have done a lot of work on the relationship between Phanerozoic magmatic activity and carbon release, but there is relatively limited attention has been given to investigating the association between Precambrian magmatic activity and carbon release. The Yanliao Large Igneous Province at 1.32 Ga exhibits extensive development of sills, and the reaction between sills and surrounding rocks triggers the release of carbon. Simultaneously, the magmatic activity during this period is considered as the final response to the breakup of the Columbia supercontinent, coinciding with the occurrence of the Mesoproterozoic Oxygenation Event To explore the connection between this magmatic activity and global carbon cycling, environmental changes and planetary evolution, nine representative stratigraphic columns are selected from the Yanliao area. We use the SILLi 1.0 1D model by utilizing the one-dimensional finite element method (FEM) to simulate and estimate the amount of carbon release triggered by sill emplacement. The simulation results indicate that the emplacement of sills increased the surrounding rock temperature and vitrinite reflectance, leading to a decrease in the total organic carbon (TOC) content. A large amount of organic carbon and inorganic carbon was released, which was initiated by the reaction between sills and surrounding rocks, with a total carbon release up to 1.24 × 1013 tons. The estimated CO2 equivalent released during this magma activity episode is expected to be greater than 4.58 × 1013. In Mesoproterozoic strata, the emplacement of sills activates carbon within the lithosphere could have implications for the global environment. Further work needs to be done in other ancient cratons that possess Lower Riphean strata to find additional evidence of the impact of this magmatic event on the Earth system. From this study, it is evident that magmatic activity during the Precambrian period could promote the activation of carbon in crustal sediments and influence global environment, which can a reference for people to understand the planetary evolution process.\",\"PeriodicalId\":505744,\"journal\":{\"name\":\"Frontiers in Earth Science\",\"volume\":\"93 14\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Earth Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/feart.2024.1368342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Earth Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/feart.2024.1368342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

岩浆活动是地球深处的碳向地表输送的重要途径之一。在这一过程中,大量的碳释放会对大气海洋环境产生重大影响。以往的研究对新生代岩浆活动与碳释放的关系做了大量工作,但对前寒武纪岩浆活动与碳释放关系的研究关注相对有限。位于 1.32 Ga 的燕辽大火成岩带出现了大量的岩浆岩,岩浆岩与围岩之间的反应引发了碳的释放。同时,这一时期的岩浆活动被认为是哥伦比亚超大陆解体的最后反应,与中新生代富氧事件的发生相吻合。为了探讨这一岩浆活动与全球碳循环、环境变化和行星演化之间的联系,我们从燕辽地区选取了九个具有代表性的地层柱。利用一维有限元法(FEM)建立了SILLi 1.0一维模型,模拟并估算了岩浆喷出引发的碳释放量。模拟结果表明,岩浆的喷出提高了围岩温度和玻璃光泽反射率,导致总有机碳(TOC)含量下降。大量的有机碳和无机碳被释放出来,这些碳是由山体和围岩之间的反应引起的,总碳释放量高达 1.24 × 1013 吨。据估计,在这次岩浆活动中释放的二氧化碳当量预计大于 4.58 × 1013。在中新生代地层中,岩浆喷出激活了岩石圈中的碳,可能对全球环境产生影响。还需要在其他拥有下里皮安地层的古陨石坑中开展进一步的工作,以寻找这一岩浆事件对地球系统影响的更多证据。从本研究中可以看出,前寒武纪时期的岩浆活动可以促进地壳沉积物中碳的活化,并对全球环境产生影响,这可以为人们了解行星演化过程提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The carbon release triggered by 1.32 Ga sill emplacement and its potential environmental implications
Magmatic activity is one of the important pathways for the delivery of deep Earth carbon to the surface. The massive carbon release in this process can have significant impacts on atmospheric-oceanic environment. Previous studies have done a lot of work on the relationship between Phanerozoic magmatic activity and carbon release, but there is relatively limited attention has been given to investigating the association between Precambrian magmatic activity and carbon release. The Yanliao Large Igneous Province at 1.32 Ga exhibits extensive development of sills, and the reaction between sills and surrounding rocks triggers the release of carbon. Simultaneously, the magmatic activity during this period is considered as the final response to the breakup of the Columbia supercontinent, coinciding with the occurrence of the Mesoproterozoic Oxygenation Event To explore the connection between this magmatic activity and global carbon cycling, environmental changes and planetary evolution, nine representative stratigraphic columns are selected from the Yanliao area. We use the SILLi 1.0 1D model by utilizing the one-dimensional finite element method (FEM) to simulate and estimate the amount of carbon release triggered by sill emplacement. The simulation results indicate that the emplacement of sills increased the surrounding rock temperature and vitrinite reflectance, leading to a decrease in the total organic carbon (TOC) content. A large amount of organic carbon and inorganic carbon was released, which was initiated by the reaction between sills and surrounding rocks, with a total carbon release up to 1.24 × 1013 tons. The estimated CO2 equivalent released during this magma activity episode is expected to be greater than 4.58 × 1013. In Mesoproterozoic strata, the emplacement of sills activates carbon within the lithosphere could have implications for the global environment. Further work needs to be done in other ancient cratons that possess Lower Riphean strata to find additional evidence of the impact of this magmatic event on the Earth system. From this study, it is evident that magmatic activity during the Precambrian period could promote the activation of carbon in crustal sediments and influence global environment, which can a reference for people to understand the planetary evolution process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Slope reliability assessment using an innovative critical failure path approach Editorial: Women in science: geohazards and georisks 2022 Editorial: Citizen science and climate services in cities: current state, new approaches and future avenues for enhancing urban climate resilience Construction and preliminary analysis of landslide database triggered by heavy storm in the parallel range-valley area of western Chongqing, China, on 8 June 2017 Monitoring the Hunga Volcano (Kingdom of Tonga) starting from the unrests of 2014/2015 to the 2021/2022 explosion with the Sentinel 1-2 and Landsat 8-9 satellites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1