{"title":"利用改进的结构相似性指数度量(SSIM)的两阶段聚类算法对同步环流模式进行分类","authors":"Kristina Winderlich, C. Dalelane, Andreas Walter","doi":"10.5194/esd-15-607-2024","DOIUrl":null,"url":null,"abstract":"Abstract. We develop a new classification method for synoptic circulation patterns with the aim to extend the evaluation routine for climate simulations. This classification is applicable to any region of the globe of any size given the reference data. Its unique novelty is the use of the modified structural similarity index metric (SSIM) instead of traditional distance metrics for cluster building. This classification method combines two classical clustering algorithms used iteratively, hierarchical agglomerative clustering (HAC) and k-medoids, with only one pre-set parameter – the threshold on the similarity between two synoptic patterns expressed as the structural similarity index measure (SSIM). This threshold is set by the user to imitate the human perception of the similarity between two images (similar structure, luminance, and contrast), whereby the number of final classes is defined automatically. We apply the SSIM-based classification method to the geopotential height at the pressure level of 500 hPa from the ERA-Interim reanalysis data for 1979–2018 and demonstrate that the built classes are (1) consistent with the changes in the input parameter, (2) well-separated, (3) spatially stable, (4) temporally stable, and (5) physically meaningful. We demonstrate an exemplary application of the synoptic circulation classes obtained with the new classification method for evaluating Coupled Model Intercomparison Project Phase 6 (CMIP6) historical climate simulations and an alternative reanalysis (for comparison purposes): output fields of CMIP6 simulations (and of the alternative reanalysis) are assigned to the classes and the Jensen–Shannon distance is computed for the match in frequency, transition, and duration probabilities of these classes. We propose using this distance metric to supplement a set of commonly used metrics for model evaluation.\n","PeriodicalId":48931,"journal":{"name":"Earth System Dynamics","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of synoptic circulation patterns with a two-stage clustering algorithm using the modified structural similarity index metric (SSIM)\",\"authors\":\"Kristina Winderlich, C. Dalelane, Andreas Walter\",\"doi\":\"10.5194/esd-15-607-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. We develop a new classification method for synoptic circulation patterns with the aim to extend the evaluation routine for climate simulations. This classification is applicable to any region of the globe of any size given the reference data. Its unique novelty is the use of the modified structural similarity index metric (SSIM) instead of traditional distance metrics for cluster building. This classification method combines two classical clustering algorithms used iteratively, hierarchical agglomerative clustering (HAC) and k-medoids, with only one pre-set parameter – the threshold on the similarity between two synoptic patterns expressed as the structural similarity index measure (SSIM). This threshold is set by the user to imitate the human perception of the similarity between two images (similar structure, luminance, and contrast), whereby the number of final classes is defined automatically. We apply the SSIM-based classification method to the geopotential height at the pressure level of 500 hPa from the ERA-Interim reanalysis data for 1979–2018 and demonstrate that the built classes are (1) consistent with the changes in the input parameter, (2) well-separated, (3) spatially stable, (4) temporally stable, and (5) physically meaningful. We demonstrate an exemplary application of the synoptic circulation classes obtained with the new classification method for evaluating Coupled Model Intercomparison Project Phase 6 (CMIP6) historical climate simulations and an alternative reanalysis (for comparison purposes): output fields of CMIP6 simulations (and of the alternative reanalysis) are assigned to the classes and the Jensen–Shannon distance is computed for the match in frequency, transition, and duration probabilities of these classes. We propose using this distance metric to supplement a set of commonly used metrics for model evaluation.\\n\",\"PeriodicalId\":48931,\"journal\":{\"name\":\"Earth System Dynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth System Dynamics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/esd-15-607-2024\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/esd-15-607-2024","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Classification of synoptic circulation patterns with a two-stage clustering algorithm using the modified structural similarity index metric (SSIM)
Abstract. We develop a new classification method for synoptic circulation patterns with the aim to extend the evaluation routine for climate simulations. This classification is applicable to any region of the globe of any size given the reference data. Its unique novelty is the use of the modified structural similarity index metric (SSIM) instead of traditional distance metrics for cluster building. This classification method combines two classical clustering algorithms used iteratively, hierarchical agglomerative clustering (HAC) and k-medoids, with only one pre-set parameter – the threshold on the similarity between two synoptic patterns expressed as the structural similarity index measure (SSIM). This threshold is set by the user to imitate the human perception of the similarity between two images (similar structure, luminance, and contrast), whereby the number of final classes is defined automatically. We apply the SSIM-based classification method to the geopotential height at the pressure level of 500 hPa from the ERA-Interim reanalysis data for 1979–2018 and demonstrate that the built classes are (1) consistent with the changes in the input parameter, (2) well-separated, (3) spatially stable, (4) temporally stable, and (5) physically meaningful. We demonstrate an exemplary application of the synoptic circulation classes obtained with the new classification method for evaluating Coupled Model Intercomparison Project Phase 6 (CMIP6) historical climate simulations and an alternative reanalysis (for comparison purposes): output fields of CMIP6 simulations (and of the alternative reanalysis) are assigned to the classes and the Jensen–Shannon distance is computed for the match in frequency, transition, and duration probabilities of these classes. We propose using this distance metric to supplement a set of commonly used metrics for model evaluation.
期刊介绍:
Earth System Dynamics (ESD) is a not-for-profit international scientific journal committed to publishing and facilitating public discussion on interdisciplinary studies focusing on the Earth system and global change. The journal explores the intricate interactions among Earth's component systems, including the atmosphere, cryosphere, hydrosphere, oceans, pedosphere, lithosphere, and the influence of life and human activity. ESD welcomes contributions that delve into these interactions, their conceptualization, modeling, quantification, predictions of global change impacts, and their implications for Earth's habitability, humanity, and the future dynamics in the Anthropocene.