基于壳聚糖的包装材料对 "即食 "肉制品国内贮藏的影响:评估生物胺的产生、邻苯二甲酸盐的迁移以及体外抗菌活性对尼日尔曲霉菌的影响

IF 2.5 4区 工程技术 Q3 CHEMISTRY, ANALYTICAL Separations Pub Date : 2024-05-21 DOI:10.3390/separations11060159
A. M. Aresta, N. De Vietro, Giovanna Mancini, Carlo Zambonin
{"title":"基于壳聚糖的包装材料对 \"即食 \"肉制品国内贮藏的影响:评估生物胺的产生、邻苯二甲酸盐的迁移以及体外抗菌活性对尼日尔曲霉菌的影响","authors":"A. M. Aresta, N. De Vietro, Giovanna Mancini, Carlo Zambonin","doi":"10.3390/separations11060159","DOIUrl":null,"url":null,"abstract":"The consumption of “ready-to-cook” foods has been experiencing rapid expansion due to modern lifestyles, and they are often sold in economical multipacks. These foods necessitate packaging that maintains their quality for extended periods of time during home storage once the original packaging is opened. This study evaluates a chitosan-based film derived from low- and high-molecular-weight (MW) chitosan in acetic acid without synthetic additives as an alternative packaging material for “ready-to-cook” beef burgers. The burgers were stored at 8 °C after being removed from their sales packaging. A commercial polyethylene (PE) film designed for food use, devoid of polyvinylchloride (PVC) and additives, served as the reference material. The production of six biogenic amines (BAs), indicative of putrefactive processes, was monitored. Additionally, the release of four phthalates (PAEs), unintentionally present in the packaging films, was assessed using solid-phase microextraction coupled with gas chromatography/mass spectrometry (SPME-GC/MS). Microbiological tests were conducted to investigate the antimicrobial efficacy of the packaging against Aspergillus Niger NRR3112. The results showed that the chitosan-based films, particularly those with low MW (LMW), exhibited superior meat preservation compared to the PE films. Furthermore, they released PAEs below legal limits and demonstrated the complete inhibition of fungal growth. These findings highlight the potential of chitosan-based packaging as a viable and effective option for extending the shelf-life and maintaining the quality of “ready-to-cook” meat products during domestic storage.","PeriodicalId":21833,"journal":{"name":"Separations","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of a Chitosan-Based Packaging Material on the Domestic Storage of “Ready-to-Cook” Meat Products: Evaluation of Biogenic Amines Production, Phthalates Migration, and In Vitro Antimicrobic Activity’s Impact on Aspergillus Niger\",\"authors\":\"A. M. Aresta, N. De Vietro, Giovanna Mancini, Carlo Zambonin\",\"doi\":\"10.3390/separations11060159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The consumption of “ready-to-cook” foods has been experiencing rapid expansion due to modern lifestyles, and they are often sold in economical multipacks. These foods necessitate packaging that maintains their quality for extended periods of time during home storage once the original packaging is opened. This study evaluates a chitosan-based film derived from low- and high-molecular-weight (MW) chitosan in acetic acid without synthetic additives as an alternative packaging material for “ready-to-cook” beef burgers. The burgers were stored at 8 °C after being removed from their sales packaging. A commercial polyethylene (PE) film designed for food use, devoid of polyvinylchloride (PVC) and additives, served as the reference material. The production of six biogenic amines (BAs), indicative of putrefactive processes, was monitored. Additionally, the release of four phthalates (PAEs), unintentionally present in the packaging films, was assessed using solid-phase microextraction coupled with gas chromatography/mass spectrometry (SPME-GC/MS). Microbiological tests were conducted to investigate the antimicrobial efficacy of the packaging against Aspergillus Niger NRR3112. The results showed that the chitosan-based films, particularly those with low MW (LMW), exhibited superior meat preservation compared to the PE films. Furthermore, they released PAEs below legal limits and demonstrated the complete inhibition of fungal growth. These findings highlight the potential of chitosan-based packaging as a viable and effective option for extending the shelf-life and maintaining the quality of “ready-to-cook” meat products during domestic storage.\",\"PeriodicalId\":21833,\"journal\":{\"name\":\"Separations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/separations11060159\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/separations11060159","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于现代生活方式的影响,"即食 "食品的消费量迅速增长,而且这些食品通常以经济实惠的多件包装出售。一旦原包装被打开,这些食品就需要能在家庭储存期间长时间保持其质量的包装。本研究评估了一种基于壳聚糖的薄膜,该薄膜由低分子量和高分子量壳聚糖在醋酸中提取而成,不含合成添加剂,可作为 "即食 "牛肉汉堡的替代包装材料。汉堡从销售包装中取出后存放在 8 °C。一种不含聚氯乙烯(PVC)和添加剂的食品用商用聚乙烯(PE)薄膜作为参考材料。监测了六种生物胺(BA)的产生情况,这些生物胺是腐败过程的标志。此外,还使用固相微萃取-气相色谱/质谱法(SPME-GC/MS)评估了包装膜中无意存在的四种邻苯二甲酸盐(PAEs)的释放情况。还进行了微生物测试,以研究包装对尼日尔曲霉 NRR3112 的抗菌功效。结果表明,与聚乙烯薄膜相比,壳聚糖薄膜,尤其是低分子量(LMW)的壳聚糖薄膜,具有更好的肉类保鲜效果。此外,它们释放的 PAEs 低于法定限值,并能完全抑制真菌生长。这些研究结果突显了壳聚糖包装的潜力,它是延长 "即食 "肉类产品在国内储存期间的货架期和保持其质量的一种可行而有效的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of a Chitosan-Based Packaging Material on the Domestic Storage of “Ready-to-Cook” Meat Products: Evaluation of Biogenic Amines Production, Phthalates Migration, and In Vitro Antimicrobic Activity’s Impact on Aspergillus Niger
The consumption of “ready-to-cook” foods has been experiencing rapid expansion due to modern lifestyles, and they are often sold in economical multipacks. These foods necessitate packaging that maintains their quality for extended periods of time during home storage once the original packaging is opened. This study evaluates a chitosan-based film derived from low- and high-molecular-weight (MW) chitosan in acetic acid without synthetic additives as an alternative packaging material for “ready-to-cook” beef burgers. The burgers were stored at 8 °C after being removed from their sales packaging. A commercial polyethylene (PE) film designed for food use, devoid of polyvinylchloride (PVC) and additives, served as the reference material. The production of six biogenic amines (BAs), indicative of putrefactive processes, was monitored. Additionally, the release of four phthalates (PAEs), unintentionally present in the packaging films, was assessed using solid-phase microextraction coupled with gas chromatography/mass spectrometry (SPME-GC/MS). Microbiological tests were conducted to investigate the antimicrobial efficacy of the packaging against Aspergillus Niger NRR3112. The results showed that the chitosan-based films, particularly those with low MW (LMW), exhibited superior meat preservation compared to the PE films. Furthermore, they released PAEs below legal limits and demonstrated the complete inhibition of fungal growth. These findings highlight the potential of chitosan-based packaging as a viable and effective option for extending the shelf-life and maintaining the quality of “ready-to-cook” meat products during domestic storage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Separations
Separations Chemistry-Analytical Chemistry
CiteScore
3.00
自引率
15.40%
发文量
342
审稿时长
12 weeks
期刊介绍: Separations (formerly Chromatography, ISSN 2227-9075, CODEN: CHROBV) provides an advanced forum for separation and purification science and technology in all areas of chemical, biological and physical science. It publishes reviews, regular research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal: Manuscripts regarding research proposals and research ideas will be particularly welcomed. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Manuscripts concerning summaries and surveys on research cooperation and projects (that are funded by national governments) to give information for a broad field of users. The scope of the journal includes but is not limited to: Theory and methodology (theory of separation methods, sample preparation, instrumental and column developments, new separation methodologies, etc.) Equipment and techniques, novel hyphenated analytical solutions (significantly extended by their combination with spectroscopic methods and in particular, mass spectrometry) Novel analysis approaches and applications to solve analytical challenges which utilize chromatographic separations as a key step in the overall solution Computational modelling of separations for the purpose of fundamental understanding and/or chromatographic optimization
期刊最新文献
Removal of Emerging Contaminants from Water by Using Carbon Materials Derived from Tingui Shells The Application of Polysaccharide Chiral Columns for the Separation of Fluorinated and Protonated Liquid Crystalline Racemic Esters The Effect of Yinchenhao Decoction on the Pharmacokinetic Profile of Futibatinib by HPLC-MS/MS The Mechanism of Air Blocking in the Impeller of Multiphase Pump Exploratory Study on Distinguishing Dendrobium Stem and Five Species of Dendrobium Using Heracles Neo Ultra-Fast Gas Phase Electronic Nose
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1