Sheikh Mannan, V. Vimal, Paul DiZio, Nikhil Krishnaswamy
{"title":"通过 \"人在回路中 \"的双向学习实现类似人类的平衡控制模式","authors":"Sheikh Mannan, V. Vimal, Paul DiZio, Nikhil Krishnaswamy","doi":"10.1609/aaaiss.v3i1.31278","DOIUrl":null,"url":null,"abstract":"In this paper, we explore how humans and AIs trained to perform a virtual inverted pendulum (VIP) balancing task converge and differ in their learning and performance strategies. We create a visual analogue of disoriented IP balancing, as may be experienced by pilots suffering from spatial disorientation, and train AI models on data from human subjects performing a real-world disoriented balancing task. We then place the trained AI models in a dyadic human-in-the-loop (HITL) training setting. Episodes in which human subjects disagreed with AI actions were logged and used to fine-tune the AI model. Human subjects then performed the task while being given guidance from pretrained and dyadically fine-tuned versions of an AI model. We examine the effects of HITL training on AI performance, AI guidance on human performance, and the behavior patterns of human subjects and AI models during task performance. We find that in many cases, HITL training improves AI performance, AI guidance improves human performance, and after dyadic training the two converge on similar behavior patterns.","PeriodicalId":516827,"journal":{"name":"Proceedings of the AAAI Symposium Series","volume":"48 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Embodying Human-Like Modes of Balance Control Through Human-In-the-Loop Dyadic Learning\",\"authors\":\"Sheikh Mannan, V. Vimal, Paul DiZio, Nikhil Krishnaswamy\",\"doi\":\"10.1609/aaaiss.v3i1.31278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we explore how humans and AIs trained to perform a virtual inverted pendulum (VIP) balancing task converge and differ in their learning and performance strategies. We create a visual analogue of disoriented IP balancing, as may be experienced by pilots suffering from spatial disorientation, and train AI models on data from human subjects performing a real-world disoriented balancing task. We then place the trained AI models in a dyadic human-in-the-loop (HITL) training setting. Episodes in which human subjects disagreed with AI actions were logged and used to fine-tune the AI model. Human subjects then performed the task while being given guidance from pretrained and dyadically fine-tuned versions of an AI model. We examine the effects of HITL training on AI performance, AI guidance on human performance, and the behavior patterns of human subjects and AI models during task performance. We find that in many cases, HITL training improves AI performance, AI guidance improves human performance, and after dyadic training the two converge on similar behavior patterns.\",\"PeriodicalId\":516827,\"journal\":{\"name\":\"Proceedings of the AAAI Symposium Series\",\"volume\":\"48 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the AAAI Symposium Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aaaiss.v3i1.31278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI Symposium Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaaiss.v3i1.31278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们探讨了人类和人工智能在执行虚拟倒立摆(VIP)平衡任务时,在学习和执行策略上是如何趋同和差异的。我们创建了一个迷失方向的 IP 平衡视觉模拟(飞行员可能会经历空间迷失),并根据执行真实世界迷失方向平衡任务的人类受试者的数据训练人工智能模型。然后,我们将训练好的人工智能模型置于双人环内(HITL)训练环境中。我们记录了人类受试者与人工智能操作不一致的情况,并利用这些情况对人工智能模型进行微调。然后,人类受试者在人工智能模型的预训练和双向微调版本的指导下执行任务。我们研究了 HITL 训练对人工智能性能的影响、人工智能对人类性能的指导,以及人类受试者和人工智能模型在执行任务过程中的行为模式。我们发现,在许多情况下,HITL 训练提高了人工智能的性能,人工智能指导提高了人类的性能,而且在经过双向训练后,两者的行为模式趋于相似。
Embodying Human-Like Modes of Balance Control Through Human-In-the-Loop Dyadic Learning
In this paper, we explore how humans and AIs trained to perform a virtual inverted pendulum (VIP) balancing task converge and differ in their learning and performance strategies. We create a visual analogue of disoriented IP balancing, as may be experienced by pilots suffering from spatial disorientation, and train AI models on data from human subjects performing a real-world disoriented balancing task. We then place the trained AI models in a dyadic human-in-the-loop (HITL) training setting. Episodes in which human subjects disagreed with AI actions were logged and used to fine-tune the AI model. Human subjects then performed the task while being given guidance from pretrained and dyadically fine-tuned versions of an AI model. We examine the effects of HITL training on AI performance, AI guidance on human performance, and the behavior patterns of human subjects and AI models during task performance. We find that in many cases, HITL training improves AI performance, AI guidance improves human performance, and after dyadic training the two converge on similar behavior patterns.