{"title":"利用高斯过程回归教学函数","authors":"Maya Malaviya, Mark K. Ho","doi":"10.1609/aaaiss.v3i1.31277","DOIUrl":null,"url":null,"abstract":"Humans are remarkably adaptive instructors who adjust advice based on their estimations about a learner’s prior knowledge and current goals. Many topics that people teach, like goal-directed behaviors, causal systems, categorization, and time-series patterns, have an underlying commonality: they map inputs to outputs through an unknown function. This project builds upon a Gaussian process (GP) regression model that describes learner behavior as they search the hypothesis space of possible underlying functions to find the one that best fits their current data. We extend this work by implementing a teacher model that reasons about a learner’s GP regression in order to provide specific information that will help them form an accurate estimation of the function.","PeriodicalId":516827,"journal":{"name":"Proceedings of the AAAI Symposium Series","volume":"11 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Teaching Functions with Gaussian Process Regression\",\"authors\":\"Maya Malaviya, Mark K. Ho\",\"doi\":\"10.1609/aaaiss.v3i1.31277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Humans are remarkably adaptive instructors who adjust advice based on their estimations about a learner’s prior knowledge and current goals. Many topics that people teach, like goal-directed behaviors, causal systems, categorization, and time-series patterns, have an underlying commonality: they map inputs to outputs through an unknown function. This project builds upon a Gaussian process (GP) regression model that describes learner behavior as they search the hypothesis space of possible underlying functions to find the one that best fits their current data. We extend this work by implementing a teacher model that reasons about a learner’s GP regression in order to provide specific information that will help them form an accurate estimation of the function.\",\"PeriodicalId\":516827,\"journal\":{\"name\":\"Proceedings of the AAAI Symposium Series\",\"volume\":\"11 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the AAAI Symposium Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aaaiss.v3i1.31277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI Symposium Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaaiss.v3i1.31277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
人类是适应性极强的导师,他们会根据对学习者先前知识和当前目标的估计来调整建议。人类教授的许多主题,如目标导向行为、因果系统、分类和时间序列模式,都有一个潜在的共性:它们通过一个未知函数将输入映射到输出。本项目建立在高斯过程(GP)回归模型的基础上,该模型描述了学习者在搜索可能的基础函数的假设空间以找到最适合其当前数据的函数时的行为。我们通过实施一个教师模型来扩展这项工作,该模型可对学习者的 GP 回归进行推理,从而提供特定信息,帮助他们形成对函数的准确估计。
Teaching Functions with Gaussian Process Regression
Humans are remarkably adaptive instructors who adjust advice based on their estimations about a learner’s prior knowledge and current goals. Many topics that people teach, like goal-directed behaviors, causal systems, categorization, and time-series patterns, have an underlying commonality: they map inputs to outputs through an unknown function. This project builds upon a Gaussian process (GP) regression model that describes learner behavior as they search the hypothesis space of possible underlying functions to find the one that best fits their current data. We extend this work by implementing a teacher model that reasons about a learner’s GP regression in order to provide specific information that will help them form an accurate estimation of the function.