通过协同设计推进神经启发的边缘终身学习

Nicholas Soures, Vedant Karia, D. Kudithipudi
{"title":"通过协同设计推进神经启发的边缘终身学习","authors":"Nicholas Soures, Vedant Karia, D. Kudithipudi","doi":"10.1609/aaaiss.v3i1.31226","DOIUrl":null,"url":null,"abstract":"Lifelong learning, which refers to an agent's ability to continuously learn and enhance its performance over its lifespan, is a significant challenge in artificial intelligence (AI), that biological systems tackle efficiently. This challenge is further exacerbated when AI is deployed in untethered environments with strict energy and latency constraints. \nWe take inspiration from neural plasticity and investigate how to leverage and build energy-efficient lifelong learning machines. Specifically, we study how a combination of neural plasticity mechanisms, namely neuromodulation, synaptic consolidation, and metaplasticity, enhance the continual learning capabilities of AI models. We further co-design architectures that leverage compute-in-memory topologies and sparse spike-based communication with quantization for the edge. Aspects of this co-design can be transferred to federated lifelong learning scenarios.","PeriodicalId":516827,"journal":{"name":"Proceedings of the AAAI Symposium Series","volume":"15 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing Neuro-Inspired Lifelong Learning for Edge with Co-Design\",\"authors\":\"Nicholas Soures, Vedant Karia, D. Kudithipudi\",\"doi\":\"10.1609/aaaiss.v3i1.31226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lifelong learning, which refers to an agent's ability to continuously learn and enhance its performance over its lifespan, is a significant challenge in artificial intelligence (AI), that biological systems tackle efficiently. This challenge is further exacerbated when AI is deployed in untethered environments with strict energy and latency constraints. \\nWe take inspiration from neural plasticity and investigate how to leverage and build energy-efficient lifelong learning machines. Specifically, we study how a combination of neural plasticity mechanisms, namely neuromodulation, synaptic consolidation, and metaplasticity, enhance the continual learning capabilities of AI models. We further co-design architectures that leverage compute-in-memory topologies and sparse spike-based communication with quantization for the edge. Aspects of this co-design can be transferred to federated lifelong learning scenarios.\",\"PeriodicalId\":516827,\"journal\":{\"name\":\"Proceedings of the AAAI Symposium Series\",\"volume\":\"15 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the AAAI Symposium Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aaaiss.v3i1.31226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI Symposium Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaaiss.v3i1.31226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

终身学习指的是代理在其生命周期内不断学习并提高其性能的能力,它是人工智能(AI)领域的一项重大挑战,而生物系统却能有效地应对这一挑战。当人工智能被部署在具有严格能量和延迟限制的无绳环境中时,这一挑战就会进一步加剧。我们从神经可塑性中汲取灵感,研究如何利用和构建高能效的终身学习机器。具体来说,我们研究神经可塑性机制的组合,即神经调节、突触巩固和元弹性,如何增强人工智能模型的持续学习能力。我们还进一步共同设计了利用内存计算拓扑结构和基于尖峰的稀疏通信以及边缘量化的架构。这种协同设计的某些方面可以移植到联合终身学习场景中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advancing Neuro-Inspired Lifelong Learning for Edge with Co-Design
Lifelong learning, which refers to an agent's ability to continuously learn and enhance its performance over its lifespan, is a significant challenge in artificial intelligence (AI), that biological systems tackle efficiently. This challenge is further exacerbated when AI is deployed in untethered environments with strict energy and latency constraints. We take inspiration from neural plasticity and investigate how to leverage and build energy-efficient lifelong learning machines. Specifically, we study how a combination of neural plasticity mechanisms, namely neuromodulation, synaptic consolidation, and metaplasticity, enhance the continual learning capabilities of AI models. We further co-design architectures that leverage compute-in-memory topologies and sparse spike-based communication with quantization for the edge. Aspects of this co-design can be transferred to federated lifelong learning scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modes of Tracking Mal-Info in Social Media with AI/ML Tools to Help Mitigate Harmful GenAI for Improved Societal Well Being Embodying Human-Like Modes of Balance Control Through Human-In-the-Loop Dyadic Learning Constructing Deep Concepts through Shallow Search Implications of Identity in AI: Creators, Creations, and Consequences ASMR: Aggregated Semantic Matching Retrieval Unleashing Commonsense Ability of LLM through Open-Ended Question Answering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1