Bin Liu, Chenglu Liu, Xuewen Li, Hao Wu, Kesong Miao, He Wu, Rengeng Li
{"title":"时效处理诱导近α钛合金 Ti60 中 α 的优先结晶取向","authors":"Bin Liu, Chenglu Liu, Xuewen Li, Hao Wu, Kesong Miao, He Wu, Rengeng Li","doi":"10.3390/met14050602","DOIUrl":null,"url":null,"abstract":"In this article, we subjected the Ti60 alloy to solid-solution treatment at 1020 °C and aging treatment at 600 °C, respectively, achieving a bimodal microstructure. The microstructures obtained after aging treatment showed no significant difference in the primary α-phase content, size, and width of the lamellar α phase. This suggests that the final microstructure morphology is primarily determined by the solid-solution temperature, with the aging process exerting less pronounced effects on microstructural alterations. Furthermore, we investigated the effect of solid-solution and aging treatment on the crystallographic orientation evolution of the secondary α phase (αs) in the near-α titanium alloy Ti60. The αs phase displays a random orientation in solid-solution treatment sample, while it demonstrated a preferential {0 1 −1 0} orientation after aging treatment. This interesting phenomenon is attributed to the enhanced variant selection resulting from the dissolution of variant near 60° and 90° during aging. Furthermore, the αs with {0 1 −1 0} orientation nucleated at the grain boundary and coalesced into larger αs lath with increasing aging time, further contributing to the αs {0 1 −1 0} texture.","PeriodicalId":510812,"journal":{"name":"Metals","volume":"36 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aging Treatment Induces the Preferential Crystallographic Orientation of αs in the Near-α Titanium Alloy Ti60\",\"authors\":\"Bin Liu, Chenglu Liu, Xuewen Li, Hao Wu, Kesong Miao, He Wu, Rengeng Li\",\"doi\":\"10.3390/met14050602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we subjected the Ti60 alloy to solid-solution treatment at 1020 °C and aging treatment at 600 °C, respectively, achieving a bimodal microstructure. The microstructures obtained after aging treatment showed no significant difference in the primary α-phase content, size, and width of the lamellar α phase. This suggests that the final microstructure morphology is primarily determined by the solid-solution temperature, with the aging process exerting less pronounced effects on microstructural alterations. Furthermore, we investigated the effect of solid-solution and aging treatment on the crystallographic orientation evolution of the secondary α phase (αs) in the near-α titanium alloy Ti60. The αs phase displays a random orientation in solid-solution treatment sample, while it demonstrated a preferential {0 1 −1 0} orientation after aging treatment. This interesting phenomenon is attributed to the enhanced variant selection resulting from the dissolution of variant near 60° and 90° during aging. Furthermore, the αs with {0 1 −1 0} orientation nucleated at the grain boundary and coalesced into larger αs lath with increasing aging time, further contributing to the αs {0 1 −1 0} texture.\",\"PeriodicalId\":510812,\"journal\":{\"name\":\"Metals\",\"volume\":\"36 20\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/met14050602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/met14050602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Aging Treatment Induces the Preferential Crystallographic Orientation of αs in the Near-α Titanium Alloy Ti60
In this article, we subjected the Ti60 alloy to solid-solution treatment at 1020 °C and aging treatment at 600 °C, respectively, achieving a bimodal microstructure. The microstructures obtained after aging treatment showed no significant difference in the primary α-phase content, size, and width of the lamellar α phase. This suggests that the final microstructure morphology is primarily determined by the solid-solution temperature, with the aging process exerting less pronounced effects on microstructural alterations. Furthermore, we investigated the effect of solid-solution and aging treatment on the crystallographic orientation evolution of the secondary α phase (αs) in the near-α titanium alloy Ti60. The αs phase displays a random orientation in solid-solution treatment sample, while it demonstrated a preferential {0 1 −1 0} orientation after aging treatment. This interesting phenomenon is attributed to the enhanced variant selection resulting from the dissolution of variant near 60° and 90° during aging. Furthermore, the αs with {0 1 −1 0} orientation nucleated at the grain boundary and coalesced into larger αs lath with increasing aging time, further contributing to the αs {0 1 −1 0} texture.