通过振动台试验对带有单向抗震支座系统(Uni-RIBS)的桥梁模型进行试验研究

IF 4.3 2区 工程技术 Q1 ENGINEERING, CIVIL Earthquake Engineering & Structural Dynamics Pub Date : 2024-05-20 DOI:10.1002/eqe.4152
Xinhao He, Yoshihiro Tajiri, Shigeki Unjoh, Shinsuke Yamazaki, Tadayuki Noro
{"title":"通过振动台试验对带有单向抗震支座系统(Uni-RIBS)的桥梁模型进行试验研究","authors":"Xinhao He,&nbsp;Yoshihiro Tajiri,&nbsp;Shigeki Unjoh,&nbsp;Shinsuke Yamazaki,&nbsp;Tadayuki Noro","doi":"10.1002/eqe.4152","DOIUrl":null,"url":null,"abstract":"<p>This study presents the experimental results on a scaled bridge model with a newly proposed unidirectional rocking isolation bearing system (referred to as Uni-RIBS) on a shaking table. The bridge model features one superstructure girder and four bearings. The experimental input encompassed a variety of recorded, design, and harmonic ground motions, characterized by differing peak accelerations, with or without vertical components, and time-scaled attributes. The superstructure girder's mass was altered for two conditions (full and half). The test results validate the rocking mechanism inherent in the Uni-RIBS and demonstrate the analytical model's accuracy in predicting the system's dynamics, including its negative stiffness, mass-independent, and energy dissipation characteristics during bearing rotation reversals. Additionally, this study examines the effectiveness of a simplified numerical model in varying complexities for predicting the seismic responses of the bridge model.</p>","PeriodicalId":11390,"journal":{"name":"Earthquake Engineering & Structural Dynamics","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eqe.4152","citationCount":"0","resultStr":"{\"title\":\"Experimental study of a scaled bridge model with a unidirectional rocking isolation bearing system (Uni-RIBS) through shaking table tests\",\"authors\":\"Xinhao He,&nbsp;Yoshihiro Tajiri,&nbsp;Shigeki Unjoh,&nbsp;Shinsuke Yamazaki,&nbsp;Tadayuki Noro\",\"doi\":\"10.1002/eqe.4152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study presents the experimental results on a scaled bridge model with a newly proposed unidirectional rocking isolation bearing system (referred to as Uni-RIBS) on a shaking table. The bridge model features one superstructure girder and four bearings. The experimental input encompassed a variety of recorded, design, and harmonic ground motions, characterized by differing peak accelerations, with or without vertical components, and time-scaled attributes. The superstructure girder's mass was altered for two conditions (full and half). The test results validate the rocking mechanism inherent in the Uni-RIBS and demonstrate the analytical model's accuracy in predicting the system's dynamics, including its negative stiffness, mass-independent, and energy dissipation characteristics during bearing rotation reversals. Additionally, this study examines the effectiveness of a simplified numerical model in varying complexities for predicting the seismic responses of the bridge model.</p>\",\"PeriodicalId\":11390,\"journal\":{\"name\":\"Earthquake Engineering & Structural Dynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eqe.4152\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Engineering & Structural Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eqe.4152\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Engineering & Structural Dynamics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eqe.4152","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了在振动台上使用新提出的单向抗震支座系统(简称 Uni-RIBS)的按比例桥梁模型的实验结果。该桥梁模型具有一个上部结构梁和四个支座。实验输入包括各种记录的、设计的和谐波的地面运动,其特点是峰值加速度不同,有或没有垂直分量和时间刻度属性。上部结构大梁的质量在两种条件下(全质量和半质量)发生了变化。测试结果验证了 Uni-RIBS 固有的摇摆机制,并证明了分析模型在预测系统动态方面的准确性,包括其负刚度、质量无关性和支座旋转反转时的能量耗散特性。此外,本研究还检验了不同复杂程度的简化数值模型在预测桥梁模型地震响应方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental study of a scaled bridge model with a unidirectional rocking isolation bearing system (Uni-RIBS) through shaking table tests

This study presents the experimental results on a scaled bridge model with a newly proposed unidirectional rocking isolation bearing system (referred to as Uni-RIBS) on a shaking table. The bridge model features one superstructure girder and four bearings. The experimental input encompassed a variety of recorded, design, and harmonic ground motions, characterized by differing peak accelerations, with or without vertical components, and time-scaled attributes. The superstructure girder's mass was altered for two conditions (full and half). The test results validate the rocking mechanism inherent in the Uni-RIBS and demonstrate the analytical model's accuracy in predicting the system's dynamics, including its negative stiffness, mass-independent, and energy dissipation characteristics during bearing rotation reversals. Additionally, this study examines the effectiveness of a simplified numerical model in varying complexities for predicting the seismic responses of the bridge model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earthquake Engineering & Structural Dynamics
Earthquake Engineering & Structural Dynamics 工程技术-工程:地质
CiteScore
7.20
自引率
13.30%
发文量
180
审稿时长
4.8 months
期刊介绍: Earthquake Engineering and Structural Dynamics provides a forum for the publication of papers on several aspects of engineering related to earthquakes. The problems in this field, and their solutions, are international in character and require knowledge of several traditional disciplines; the Journal will reflect this. Papers that may be relevant but do not emphasize earthquake engineering and related structural dynamics are not suitable for the Journal. Relevant topics include the following: ground motions for analysis and design geotechnical earthquake engineering probabilistic and deterministic methods of dynamic analysis experimental behaviour of structures seismic protective systems system identification risk assessment seismic code requirements methods for earthquake-resistant design and retrofit of structures.
期刊最新文献
Issue information Issue information A locally resonant metamaterial and its application in vibration isolation: Experimental and numerical investigations Issue information Dynamics of a rocking bridge with two-sided poundings: A shake table investigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1