{"title":"用于大规模视觉地点识别的 CosPlace 分布式训练","authors":"Riccardo Zaccone, Gabriele Berton, C. Masone","doi":"10.3389/frobt.2024.1386464","DOIUrl":null,"url":null,"abstract":"Visual place recognition (VPR) is a popular computer vision task aimed at recognizing the geographic location of a visual query, usually within a tolerance of a few meters. Modern approaches address VPR from an image retrieval standpoint using a kNN on top of embeddings extracted by a deep neural network from both the query and images in a database. Although most of these approaches rely on contrastive learning, which limits their ability to be trained on large-scale datasets (due to mining), the recently reported CosPlace proposes an alternative training paradigm using a classification task as the proxy. This has been shown to be effective in expanding the potential of VPR models to learn from large-scale and fine-grained datasets. In this work, we experimentally analyze CosPlace from a continual learning perspective and show that its sequential training procedure leads to suboptimal results. As a solution, we propose a different formulation that not only solves the pitfalls of the original training strategy effectively but also enables faster and more efficient distributed training. Finally, we discuss the open challenges in further speeding up large-scale image retrieval for VPR.","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed training of CosPlace for large-scale visual place recognition\",\"authors\":\"Riccardo Zaccone, Gabriele Berton, C. Masone\",\"doi\":\"10.3389/frobt.2024.1386464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual place recognition (VPR) is a popular computer vision task aimed at recognizing the geographic location of a visual query, usually within a tolerance of a few meters. Modern approaches address VPR from an image retrieval standpoint using a kNN on top of embeddings extracted by a deep neural network from both the query and images in a database. Although most of these approaches rely on contrastive learning, which limits their ability to be trained on large-scale datasets (due to mining), the recently reported CosPlace proposes an alternative training paradigm using a classification task as the proxy. This has been shown to be effective in expanding the potential of VPR models to learn from large-scale and fine-grained datasets. In this work, we experimentally analyze CosPlace from a continual learning perspective and show that its sequential training procedure leads to suboptimal results. As a solution, we propose a different formulation that not only solves the pitfalls of the original training strategy effectively but also enables faster and more efficient distributed training. Finally, we discuss the open challenges in further speeding up large-scale image retrieval for VPR.\",\"PeriodicalId\":47597,\"journal\":{\"name\":\"Frontiers in Robotics and AI\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Robotics and AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frobt.2024.1386464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2024.1386464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
Distributed training of CosPlace for large-scale visual place recognition
Visual place recognition (VPR) is a popular computer vision task aimed at recognizing the geographic location of a visual query, usually within a tolerance of a few meters. Modern approaches address VPR from an image retrieval standpoint using a kNN on top of embeddings extracted by a deep neural network from both the query and images in a database. Although most of these approaches rely on contrastive learning, which limits their ability to be trained on large-scale datasets (due to mining), the recently reported CosPlace proposes an alternative training paradigm using a classification task as the proxy. This has been shown to be effective in expanding the potential of VPR models to learn from large-scale and fine-grained datasets. In this work, we experimentally analyze CosPlace from a continual learning perspective and show that its sequential training procedure leads to suboptimal results. As a solution, we propose a different formulation that not only solves the pitfalls of the original training strategy effectively but also enables faster and more efficient distributed training. Finally, we discuss the open challenges in further speeding up large-scale image retrieval for VPR.
期刊介绍:
Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.