N. Tan, Niket Tandon, David Wadden, Oyvind Tafjord, M. Gahegan, Michael Witbrock
{"title":"对科学主张的忠实推理","authors":"N. Tan, Niket Tandon, David Wadden, Oyvind Tafjord, M. Gahegan, Michael Witbrock","doi":"10.1609/aaaiss.v3i1.31209","DOIUrl":null,"url":null,"abstract":"Claim verification in scientific domains requires models that faithfully incorporate relevant knowledge from the ever-growing, vast existing literature. \nUnfaithful claim verifications can lead to misinformation such as those observed during the COVID-19 pandemic. Fact-checking systems often fail to capture the complex relationship between claims and evidence, especially with ambiguous claims and implicit assumptions. Relying only on current LLMs poses challenges due to hallucinations and information traceability issues. To address these challenges, our approach considers multiple viewpoints onto the scientific literature, enabling the assessment of contradictory arguments and implicit assumptions. Our proposed inference method adds faithful reasoning to large language models by distilling information from diverse, relevant scientific abstracts. This method provides a verdict label that can be weighted by the reputation of the scientific articles and an explanation that can be traced back to sources. Our findings demonstrate that humans not only perceive our explanation to be significantly superior to the off-the-shelf model, but they also evaluate it as faithfully enabling the tracing of evidence back to its original sources.","PeriodicalId":516827,"journal":{"name":"Proceedings of the AAAI Symposium Series","volume":"77 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Faithful Reasoning over Scientific Claims\",\"authors\":\"N. Tan, Niket Tandon, David Wadden, Oyvind Tafjord, M. Gahegan, Michael Witbrock\",\"doi\":\"10.1609/aaaiss.v3i1.31209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Claim verification in scientific domains requires models that faithfully incorporate relevant knowledge from the ever-growing, vast existing literature. \\nUnfaithful claim verifications can lead to misinformation such as those observed during the COVID-19 pandemic. Fact-checking systems often fail to capture the complex relationship between claims and evidence, especially with ambiguous claims and implicit assumptions. Relying only on current LLMs poses challenges due to hallucinations and information traceability issues. To address these challenges, our approach considers multiple viewpoints onto the scientific literature, enabling the assessment of contradictory arguments and implicit assumptions. Our proposed inference method adds faithful reasoning to large language models by distilling information from diverse, relevant scientific abstracts. This method provides a verdict label that can be weighted by the reputation of the scientific articles and an explanation that can be traced back to sources. Our findings demonstrate that humans not only perceive our explanation to be significantly superior to the off-the-shelf model, but they also evaluate it as faithfully enabling the tracing of evidence back to its original sources.\",\"PeriodicalId\":516827,\"journal\":{\"name\":\"Proceedings of the AAAI Symposium Series\",\"volume\":\"77 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the AAAI Symposium Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aaaiss.v3i1.31209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI Symposium Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaaiss.v3i1.31209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Claim verification in scientific domains requires models that faithfully incorporate relevant knowledge from the ever-growing, vast existing literature.
Unfaithful claim verifications can lead to misinformation such as those observed during the COVID-19 pandemic. Fact-checking systems often fail to capture the complex relationship between claims and evidence, especially with ambiguous claims and implicit assumptions. Relying only on current LLMs poses challenges due to hallucinations and information traceability issues. To address these challenges, our approach considers multiple viewpoints onto the scientific literature, enabling the assessment of contradictory arguments and implicit assumptions. Our proposed inference method adds faithful reasoning to large language models by distilling information from diverse, relevant scientific abstracts. This method provides a verdict label that can be weighted by the reputation of the scientific articles and an explanation that can be traced back to sources. Our findings demonstrate that humans not only perceive our explanation to be significantly superior to the off-the-shelf model, but they also evaluate it as faithfully enabling the tracing of evidence back to its original sources.