模拟人类学习语言和概念的过程

Peter Lindes, Steven Jones
{"title":"模拟人类学习语言和概念的过程","authors":"Peter Lindes, Steven Jones","doi":"10.1609/aaaiss.v3i1.31275","DOIUrl":null,"url":null,"abstract":"Humans acquire language and related concepts in a trajectory over a lifetime. Concepts for simple interaction with the world are learned before language. Later, words are learned to name these concepts along with structures needed to represent larger meanings. Eventually, language advances to where it can drive the learning of new concepts. Throughout this trajectory a language processing capability uses architectural mechanisms to process language using the knowledge already acquired. We assume that this growing body of knowledge is made up of small units of form-meaning mapping that can be composed in many ways, suggesting that these units are learned incrementally from experience. In prior work we have built a system to comprehend human language within an autonomous robot using knowledge in such units developed by hand. Here we propose a research program to develop the ability of an artificial agent to acquire this knowledge incrementally and autonomously from its experience in a similar trajectory. We then propose a strategy for evaluating this human-like learning system using a large benchmark created as a tool for training deep learning systems. We expect that our human-like learning system will produce better task performance from training on only a small subset of this benchmark.","PeriodicalId":516827,"journal":{"name":"Proceedings of the AAAI Symposium Series","volume":"81 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Human-Like Acquisition of Language and Concepts\",\"authors\":\"Peter Lindes, Steven Jones\",\"doi\":\"10.1609/aaaiss.v3i1.31275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Humans acquire language and related concepts in a trajectory over a lifetime. Concepts for simple interaction with the world are learned before language. Later, words are learned to name these concepts along with structures needed to represent larger meanings. Eventually, language advances to where it can drive the learning of new concepts. Throughout this trajectory a language processing capability uses architectural mechanisms to process language using the knowledge already acquired. We assume that this growing body of knowledge is made up of small units of form-meaning mapping that can be composed in many ways, suggesting that these units are learned incrementally from experience. In prior work we have built a system to comprehend human language within an autonomous robot using knowledge in such units developed by hand. Here we propose a research program to develop the ability of an artificial agent to acquire this knowledge incrementally and autonomously from its experience in a similar trajectory. We then propose a strategy for evaluating this human-like learning system using a large benchmark created as a tool for training deep learning systems. We expect that our human-like learning system will produce better task performance from training on only a small subset of this benchmark.\",\"PeriodicalId\":516827,\"journal\":{\"name\":\"Proceedings of the AAAI Symposium Series\",\"volume\":\"81 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the AAAI Symposium Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aaaiss.v3i1.31275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI Symposium Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaaiss.v3i1.31275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人的一生都在循序渐进地学习语言和相关概念。在学习语言之前,人们先学会了与世界进行简单互动的概念。后来,人们学会了命名这些概念的词汇,以及表达更大含义所需的结构。最终,语言可以推动新概念的学习。在这一发展过程中,语言处理能力将利用已掌握的知识架构机制来处理语言。我们假定,这个不断增长的知识体系是由形式-意义映射的小单元组成的,它们可以以多种方式组成,这表明这些单元是从经验中逐步学习的。在之前的工作中,我们利用手工开发的此类单元知识,在自主机器人中建立了一个理解人类语言的系统。在此,我们提出了一项研究计划,以开发人工智能代理从类似轨迹的经验中逐步自主获取这些知识的能力。然后,我们提出一种策略,利用作为深度学习系统训练工具而创建的大型基准来评估这种类人学习系统。我们预计,我们的类人学习系统只需在该基准的一小部分上进行训练,就能产生更好的任务性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling Human-Like Acquisition of Language and Concepts
Humans acquire language and related concepts in a trajectory over a lifetime. Concepts for simple interaction with the world are learned before language. Later, words are learned to name these concepts along with structures needed to represent larger meanings. Eventually, language advances to where it can drive the learning of new concepts. Throughout this trajectory a language processing capability uses architectural mechanisms to process language using the knowledge already acquired. We assume that this growing body of knowledge is made up of small units of form-meaning mapping that can be composed in many ways, suggesting that these units are learned incrementally from experience. In prior work we have built a system to comprehend human language within an autonomous robot using knowledge in such units developed by hand. Here we propose a research program to develop the ability of an artificial agent to acquire this knowledge incrementally and autonomously from its experience in a similar trajectory. We then propose a strategy for evaluating this human-like learning system using a large benchmark created as a tool for training deep learning systems. We expect that our human-like learning system will produce better task performance from training on only a small subset of this benchmark.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modes of Tracking Mal-Info in Social Media with AI/ML Tools to Help Mitigate Harmful GenAI for Improved Societal Well Being Embodying Human-Like Modes of Balance Control Through Human-In-the-Loop Dyadic Learning Constructing Deep Concepts through Shallow Search Implications of Identity in AI: Creators, Creations, and Consequences ASMR: Aggregated Semantic Matching Retrieval Unleashing Commonsense Ability of LLM through Open-Ended Question Answering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1