旅程重于目的地:动态传感器定位增强通用性

Agnese Marcato, E. Guiltinan, Hari S. Viswanathan, Dan O’Malley, Nicholas Lubbers, Javier E. Santos
{"title":"旅程重于目的地:动态传感器定位增强通用性","authors":"Agnese Marcato, E. Guiltinan, Hari S. Viswanathan, Dan O’Malley, Nicholas Lubbers, Javier E. Santos","doi":"10.1088/2632-2153/ad4e06","DOIUrl":null,"url":null,"abstract":"\n Reconstructing complex, high-dimensional global fields from limited data points is a challenge across various scientific and industrial domains. This is particularly important for recovering spatio-temporal fields using sensor data from, for example, laboratory-based scientific experiments, weather forecasting, or drone surveys. Given the prohibitive costs of specialized sensors and the inaccessibility of certain regions of the domain, achieving full field coverage is typically not feasible. Therefore, the development of machine learning algorithms trained to reconstruct fields given a limited dataset is of critical importance. In this study, we introduce a general approach that employs moving sensors to enhance data exploitation during the training of an attention based neural network, thereby improving field reconstruction. The training of sensor locations is accomplished using an end-to-end workflow, ensuring differentiability in the interpolation of field values associated to the sensors, and is simple to implement using differentiable programming. Additionally, we have incorporated a correction mechanism to prevent sensors from entering invalid regions within the domain. We evaluated our method using two distinct datasets; the results show that our approach enhances learning, as evidenced by improved test scores.","PeriodicalId":503691,"journal":{"name":"Machine Learning: Science and Technology","volume":"79 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Journey over Destination: Dynamic Sensor Placement Enhances Generalization\",\"authors\":\"Agnese Marcato, E. Guiltinan, Hari S. Viswanathan, Dan O’Malley, Nicholas Lubbers, Javier E. Santos\",\"doi\":\"10.1088/2632-2153/ad4e06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Reconstructing complex, high-dimensional global fields from limited data points is a challenge across various scientific and industrial domains. This is particularly important for recovering spatio-temporal fields using sensor data from, for example, laboratory-based scientific experiments, weather forecasting, or drone surveys. Given the prohibitive costs of specialized sensors and the inaccessibility of certain regions of the domain, achieving full field coverage is typically not feasible. Therefore, the development of machine learning algorithms trained to reconstruct fields given a limited dataset is of critical importance. In this study, we introduce a general approach that employs moving sensors to enhance data exploitation during the training of an attention based neural network, thereby improving field reconstruction. The training of sensor locations is accomplished using an end-to-end workflow, ensuring differentiability in the interpolation of field values associated to the sensors, and is simple to implement using differentiable programming. Additionally, we have incorporated a correction mechanism to prevent sensors from entering invalid regions within the domain. We evaluated our method using two distinct datasets; the results show that our approach enhances learning, as evidenced by improved test scores.\",\"PeriodicalId\":503691,\"journal\":{\"name\":\"Machine Learning: Science and Technology\",\"volume\":\"79 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning: Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-2153/ad4e06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning: Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad4e06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从有限的数据点重建复杂的高维全局场是各种科学和工业领域面临的挑战。这对于利用来自实验室科学实验、天气预报或无人机勘测等的传感器数据恢复时空场尤为重要。由于专用传感器的成本过高,而且无法进入领域的某些区域,实现全场覆盖通常是不可行的。因此,开发经过训练的机器学习算法,以便在有限数据集的情况下重建实地至关重要。在本研究中,我们引入了一种通用方法,在基于注意力的神经网络训练过程中,利用移动传感器来加强数据利用,从而改善场重建。传感器位置的训练采用端到端工作流程完成,确保与传感器相关的场值插值的可微分性,并通过可微分编程简单实现。此外,我们还采用了一种校正机制,以防止传感器进入域内的无效区域。我们使用两个不同的数据集对我们的方法进行了评估;结果表明,我们的方法提高了学习效果,测试分数的提高就是证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Journey over Destination: Dynamic Sensor Placement Enhances Generalization
Reconstructing complex, high-dimensional global fields from limited data points is a challenge across various scientific and industrial domains. This is particularly important for recovering spatio-temporal fields using sensor data from, for example, laboratory-based scientific experiments, weather forecasting, or drone surveys. Given the prohibitive costs of specialized sensors and the inaccessibility of certain regions of the domain, achieving full field coverage is typically not feasible. Therefore, the development of machine learning algorithms trained to reconstruct fields given a limited dataset is of critical importance. In this study, we introduce a general approach that employs moving sensors to enhance data exploitation during the training of an attention based neural network, thereby improving field reconstruction. The training of sensor locations is accomplished using an end-to-end workflow, ensuring differentiability in the interpolation of field values associated to the sensors, and is simple to implement using differentiable programming. Additionally, we have incorporated a correction mechanism to prevent sensors from entering invalid regions within the domain. We evaluated our method using two distinct datasets; the results show that our approach enhances learning, as evidenced by improved test scores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Benefit of Attention in Inverse Design of Thin Films Filters Predictive Models for Inorganic Materials Thermoelectric Properties with Machine Learning Benchmarking machine learning interatomic potentials via phonon anharmonicity Application of Deep Learning-based Fuzzy Systems to Analyze the Overall Risk of Mortality in Glioblastoma Multiforme Formation Energy Prediction of Neutral Single-Atom Impurities in 2D Materials using Tree-based Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1