生物仿生设计解决方案的检索增强生成和 LLM 代理

Christopher Toukmaji, Allison Tee
{"title":"生物仿生设计解决方案的检索增强生成和 LLM 代理","authors":"Christopher Toukmaji, Allison Tee","doi":"10.1609/aaaiss.v3i1.31210","DOIUrl":null,"url":null,"abstract":"We present BIDARA, a Bio-Inspired Design And Research Assistant, to address the complexity of biomimicry -- the practice of designing modern-day engineering solutions inspired by biological phenomena. Large Language Models (LLMs) have been shown to act as sufficient general-purpose task solvers, but they often hallucinate and fail in regimes that require domain-specific and up-to-date knowledge. We integrate Retrieval-Augmented Generation (RAG) and Reasoning-and-Action agents to aid LLMs in avoiding hallucination and utilizing updated knowledge during generation of biomimetic design solutions. We find that incorporating RAG increases the feasibility of the design solutions in both prompting and agent settings, and we use these findings to guide our ongoing work. To the extent of our knowledge, this is the first work that integrates and evaluates Retrieval-Augmented Generation within LLM-generated biomimetic design solutions.","PeriodicalId":516827,"journal":{"name":"Proceedings of the AAAI Symposium Series","volume":"46 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Retrieval-Augmented Generation and LLM Agents for Biomimicry Design Solutions\",\"authors\":\"Christopher Toukmaji, Allison Tee\",\"doi\":\"10.1609/aaaiss.v3i1.31210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present BIDARA, a Bio-Inspired Design And Research Assistant, to address the complexity of biomimicry -- the practice of designing modern-day engineering solutions inspired by biological phenomena. Large Language Models (LLMs) have been shown to act as sufficient general-purpose task solvers, but they often hallucinate and fail in regimes that require domain-specific and up-to-date knowledge. We integrate Retrieval-Augmented Generation (RAG) and Reasoning-and-Action agents to aid LLMs in avoiding hallucination and utilizing updated knowledge during generation of biomimetic design solutions. We find that incorporating RAG increases the feasibility of the design solutions in both prompting and agent settings, and we use these findings to guide our ongoing work. To the extent of our knowledge, this is the first work that integrates and evaluates Retrieval-Augmented Generation within LLM-generated biomimetic design solutions.\",\"PeriodicalId\":516827,\"journal\":{\"name\":\"Proceedings of the AAAI Symposium Series\",\"volume\":\"46 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the AAAI Symposium Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aaaiss.v3i1.31210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI Symposium Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaaiss.v3i1.31210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们推出了生物启发设计与研究助手(BIDARA),以解决生物仿生的复杂性问题--即从生物现象中汲取灵感设计现代工程解决方案的实践。大型语言模型(LLMs)已被证明可以充当通用任务求解器,但在需要特定领域和最新知识的情况下,它们往往会出现幻觉和失败。我们整合了检索增强生成(RAG)和推理与行动代理,以帮助 LLM 在生成生物仿生设计方案时避免幻觉并利用最新知识。我们发现,无论是在提示还是在代理设置中,结合 RAG 都能提高设计方案的可行性。据我们所知,这是第一项在 LLM 生成的仿生设计方案中整合和评估检索增强生成的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Retrieval-Augmented Generation and LLM Agents for Biomimicry Design Solutions
We present BIDARA, a Bio-Inspired Design And Research Assistant, to address the complexity of biomimicry -- the practice of designing modern-day engineering solutions inspired by biological phenomena. Large Language Models (LLMs) have been shown to act as sufficient general-purpose task solvers, but they often hallucinate and fail in regimes that require domain-specific and up-to-date knowledge. We integrate Retrieval-Augmented Generation (RAG) and Reasoning-and-Action agents to aid LLMs in avoiding hallucination and utilizing updated knowledge during generation of biomimetic design solutions. We find that incorporating RAG increases the feasibility of the design solutions in both prompting and agent settings, and we use these findings to guide our ongoing work. To the extent of our knowledge, this is the first work that integrates and evaluates Retrieval-Augmented Generation within LLM-generated biomimetic design solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modes of Tracking Mal-Info in Social Media with AI/ML Tools to Help Mitigate Harmful GenAI for Improved Societal Well Being Embodying Human-Like Modes of Balance Control Through Human-In-the-Loop Dyadic Learning Constructing Deep Concepts through Shallow Search Implications of Identity in AI: Creators, Creations, and Consequences ASMR: Aggregated Semantic Matching Retrieval Unleashing Commonsense Ability of LLM through Open-Ended Question Answering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1