{"title":"提高风能预测精度,优化混合动力系统能源管理","authors":"Rim Ben Ammar, Mohsen Ben Ammar, A. Oualha","doi":"10.1115/1.4065538","DOIUrl":null,"url":null,"abstract":"\n Due to its renewable and sustainable features, the wind energy is growing up around the word. However, the wind speed fluctuation induces the intermittent character of the generated wind power. Thus, wind power estimation, through wind speed forecasting, is very inherent to ensure an effective power scheduling. Four wind speed predictors based on deep learning networks and optimization algorithms, were developed. The designed topologies are the multilayer perceptron neural network, the long short-term memory network, the convolutional short-term memory network and the bidirectional short-term neural network coupled with the Bayesian optimization. The models performance was evaluated through evaluation indicators mainly, the root mean squared error, the mean absolute error and the mean absolute percentage. Based on the simulation results, all of them show a considerable prediction results. Moreover, the combination of the the long short-term memory network and the optimization algorithm is more robust on wind speed forecasting with a mean absolute error equal to 0.23 m/s. The estimated wind power was investigated for an optimal Wind/PV/Battery/Diesel energy management. The handling approach lies on the continuity of the load supply through the renewable sources as priority, the batteries on second order and finally the diesels. The proposed management strategy respects the designed criteria with satisfactory contribution percentage of the renewable sources equal to 71%.","PeriodicalId":509700,"journal":{"name":"Journal of Energy Resources Technology","volume":"45 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving wind power forecast accuracy for optimal hybrid system energy management\",\"authors\":\"Rim Ben Ammar, Mohsen Ben Ammar, A. Oualha\",\"doi\":\"10.1115/1.4065538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Due to its renewable and sustainable features, the wind energy is growing up around the word. However, the wind speed fluctuation induces the intermittent character of the generated wind power. Thus, wind power estimation, through wind speed forecasting, is very inherent to ensure an effective power scheduling. Four wind speed predictors based on deep learning networks and optimization algorithms, were developed. The designed topologies are the multilayer perceptron neural network, the long short-term memory network, the convolutional short-term memory network and the bidirectional short-term neural network coupled with the Bayesian optimization. The models performance was evaluated through evaluation indicators mainly, the root mean squared error, the mean absolute error and the mean absolute percentage. Based on the simulation results, all of them show a considerable prediction results. Moreover, the combination of the the long short-term memory network and the optimization algorithm is more robust on wind speed forecasting with a mean absolute error equal to 0.23 m/s. The estimated wind power was investigated for an optimal Wind/PV/Battery/Diesel energy management. The handling approach lies on the continuity of the load supply through the renewable sources as priority, the batteries on second order and finally the diesels. The proposed management strategy respects the designed criteria with satisfactory contribution percentage of the renewable sources equal to 71%.\",\"PeriodicalId\":509700,\"journal\":{\"name\":\"Journal of Energy Resources Technology\",\"volume\":\"45 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy Resources Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4065538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Resources Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4065538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving wind power forecast accuracy for optimal hybrid system energy management
Due to its renewable and sustainable features, the wind energy is growing up around the word. However, the wind speed fluctuation induces the intermittent character of the generated wind power. Thus, wind power estimation, through wind speed forecasting, is very inherent to ensure an effective power scheduling. Four wind speed predictors based on deep learning networks and optimization algorithms, were developed. The designed topologies are the multilayer perceptron neural network, the long short-term memory network, the convolutional short-term memory network and the bidirectional short-term neural network coupled with the Bayesian optimization. The models performance was evaluated through evaluation indicators mainly, the root mean squared error, the mean absolute error and the mean absolute percentage. Based on the simulation results, all of them show a considerable prediction results. Moreover, the combination of the the long short-term memory network and the optimization algorithm is more robust on wind speed forecasting with a mean absolute error equal to 0.23 m/s. The estimated wind power was investigated for an optimal Wind/PV/Battery/Diesel energy management. The handling approach lies on the continuity of the load supply through the renewable sources as priority, the batteries on second order and finally the diesels. The proposed management strategy respects the designed criteria with satisfactory contribution percentage of the renewable sources equal to 71%.