带有参数探索的文化算法引导政策梯度

Mark Nuppnau, Khalid Kattan, R. G. Reynolds
{"title":"带有参数探索的文化算法引导政策梯度","authors":"Mark Nuppnau, Khalid Kattan, R. G. Reynolds","doi":"10.1609/aaaiss.v3i1.31240","DOIUrl":null,"url":null,"abstract":"This study explores the integration of cultural algorithms (CA) with the Policy Gradients with Parameter-Based Exploration (PGPE) algorithm for the task of MNIST hand-written digit classification within the EvoJAX framework. The PGPE algorithm is enhanced by incorporating a belief space, consisting on Domain, Situational, and History knowledge sources (KS), to guide the search process and improve convergence speed. The PGPE algorithm, implemented within the EvoJAX framework, can efficiently find an optimal parameter-space policy for the MNIST task. However, increasing the complexity of the task and policy space, such as the CheXpert dataset and DenseNet, requires a more sophisticated approach to efficiently navigate the search space. We introduce CA-PGPE, a novel approach that integrates CA with PGPE to guide the search process and improve convergence speed. Future work will focus on incorporating exploratory knowledge sources and evaluate the enhanced CA-PGPE algorithm on more complex datasets and model architectures, such as CIFAR-10 and CheXpert with DenseNet.","PeriodicalId":516827,"journal":{"name":"Proceedings of the AAAI Symposium Series","volume":"26 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cultural Algorithm Guided Policy Gradient with Parameter Exploration\",\"authors\":\"Mark Nuppnau, Khalid Kattan, R. G. Reynolds\",\"doi\":\"10.1609/aaaiss.v3i1.31240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explores the integration of cultural algorithms (CA) with the Policy Gradients with Parameter-Based Exploration (PGPE) algorithm for the task of MNIST hand-written digit classification within the EvoJAX framework. The PGPE algorithm is enhanced by incorporating a belief space, consisting on Domain, Situational, and History knowledge sources (KS), to guide the search process and improve convergence speed. The PGPE algorithm, implemented within the EvoJAX framework, can efficiently find an optimal parameter-space policy for the MNIST task. However, increasing the complexity of the task and policy space, such as the CheXpert dataset and DenseNet, requires a more sophisticated approach to efficiently navigate the search space. We introduce CA-PGPE, a novel approach that integrates CA with PGPE to guide the search process and improve convergence speed. Future work will focus on incorporating exploratory knowledge sources and evaluate the enhanced CA-PGPE algorithm on more complex datasets and model architectures, such as CIFAR-10 and CheXpert with DenseNet.\",\"PeriodicalId\":516827,\"journal\":{\"name\":\"Proceedings of the AAAI Symposium Series\",\"volume\":\"26 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the AAAI Symposium Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aaaiss.v3i1.31240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI Symposium Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaaiss.v3i1.31240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究在 EvoJAX 框架内,针对 MNIST 手写数字分类任务,探索了文化算法(CA)与基于参数探索的策略梯度算法(PGPE)的整合。PGPE 算法通过纳入由领域、情境和历史知识源(KS)组成的信念空间得到增强,以指导搜索过程并提高收敛速度。在 EvoJAX 框架内实施的 PGPE 算法能有效地为 MNIST 任务找到最佳参数空间策略。然而,要提高任务和策略空间(如 CheXpert 数据集和 DenseNet)的复杂性,就需要采用更复杂的方法来高效地浏览搜索空间。我们引入了 CA-PGPE,这是一种将 CA 与 PGPE 相结合的新方法,用于指导搜索过程并提高收敛速度。未来的工作重点是纳入探索性知识源,并在更复杂的数据集和模型架构(如 CIFAR-10 和带有 DenseNet 的 CheXpert)上评估增强型 CA-PGPE 算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cultural Algorithm Guided Policy Gradient with Parameter Exploration
This study explores the integration of cultural algorithms (CA) with the Policy Gradients with Parameter-Based Exploration (PGPE) algorithm for the task of MNIST hand-written digit classification within the EvoJAX framework. The PGPE algorithm is enhanced by incorporating a belief space, consisting on Domain, Situational, and History knowledge sources (KS), to guide the search process and improve convergence speed. The PGPE algorithm, implemented within the EvoJAX framework, can efficiently find an optimal parameter-space policy for the MNIST task. However, increasing the complexity of the task and policy space, such as the CheXpert dataset and DenseNet, requires a more sophisticated approach to efficiently navigate the search space. We introduce CA-PGPE, a novel approach that integrates CA with PGPE to guide the search process and improve convergence speed. Future work will focus on incorporating exploratory knowledge sources and evaluate the enhanced CA-PGPE algorithm on more complex datasets and model architectures, such as CIFAR-10 and CheXpert with DenseNet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modes of Tracking Mal-Info in Social Media with AI/ML Tools to Help Mitigate Harmful GenAI for Improved Societal Well Being Embodying Human-Like Modes of Balance Control Through Human-In-the-Loop Dyadic Learning Constructing Deep Concepts through Shallow Search Implications of Identity in AI: Creators, Creations, and Consequences ASMR: Aggregated Semantic Matching Retrieval Unleashing Commonsense Ability of LLM through Open-Ended Question Answering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1