{"title":"离散元法中用于纤维和颗粒增强复合材料力学性能建模的相同校准方法","authors":"Ali Paziresh, Hassan Assaee","doi":"10.1007/s40571-024-00749-4","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores the mechanical properties of particle- and unidirectional fiber-reinforced composite materials using the discrete element method (DEM) with an identical calibration technique. Determining micromechanical properties within DEM modeling is a time-consuming challenge typically requiring a distinct calibration approach for each specific model. In this research, we employ identical micromechanical properties for the generated discrete domain to simulate both types of composites. The findings in this paper suggest that an identical calibration procedure could potentially be effective for modeling composites, regardless of their varied reinforcement shapes. Given the computational costs associated with DEM modeling, this research presents a potential advancement in streamlining the DEM calibration process. The linear parallel-bond model served as the contact model in DEM simulations, offering realistic estimates for materials resembling cemented structures. Additionally, group logic was employed in DEM modeling to construct the reinforcement and matrix phases of the composites. Results were validated through FEM simulations and theoretical predictions, demonstrating a satisfactory level of agreement. Furthermore, this paper provides a comprehensive depiction of micro-crack initiation and propagation, along with various fracture modes, including matrix and fiber cracking, as well as matrix/fiber debonding, for both composite types.</p></div>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"11 6","pages":"2727 - 2752"},"PeriodicalIF":2.8000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identical calibration approach in discrete element method for modeling mechanical properties in fiber- and particle-reinforced composites\",\"authors\":\"Ali Paziresh, Hassan Assaee\",\"doi\":\"10.1007/s40571-024-00749-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study explores the mechanical properties of particle- and unidirectional fiber-reinforced composite materials using the discrete element method (DEM) with an identical calibration technique. Determining micromechanical properties within DEM modeling is a time-consuming challenge typically requiring a distinct calibration approach for each specific model. In this research, we employ identical micromechanical properties for the generated discrete domain to simulate both types of composites. The findings in this paper suggest that an identical calibration procedure could potentially be effective for modeling composites, regardless of their varied reinforcement shapes. Given the computational costs associated with DEM modeling, this research presents a potential advancement in streamlining the DEM calibration process. The linear parallel-bond model served as the contact model in DEM simulations, offering realistic estimates for materials resembling cemented structures. Additionally, group logic was employed in DEM modeling to construct the reinforcement and matrix phases of the composites. Results were validated through FEM simulations and theoretical predictions, demonstrating a satisfactory level of agreement. Furthermore, this paper provides a comprehensive depiction of micro-crack initiation and propagation, along with various fracture modes, including matrix and fiber cracking, as well as matrix/fiber debonding, for both composite types.</p></div>\",\"PeriodicalId\":524,\"journal\":{\"name\":\"Computational Particle Mechanics\",\"volume\":\"11 6\",\"pages\":\"2727 - 2752\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Particle Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40571-024-00749-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40571-024-00749-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Identical calibration approach in discrete element method for modeling mechanical properties in fiber- and particle-reinforced composites
This study explores the mechanical properties of particle- and unidirectional fiber-reinforced composite materials using the discrete element method (DEM) with an identical calibration technique. Determining micromechanical properties within DEM modeling is a time-consuming challenge typically requiring a distinct calibration approach for each specific model. In this research, we employ identical micromechanical properties for the generated discrete domain to simulate both types of composites. The findings in this paper suggest that an identical calibration procedure could potentially be effective for modeling composites, regardless of their varied reinforcement shapes. Given the computational costs associated with DEM modeling, this research presents a potential advancement in streamlining the DEM calibration process. The linear parallel-bond model served as the contact model in DEM simulations, offering realistic estimates for materials resembling cemented structures. Additionally, group logic was employed in DEM modeling to construct the reinforcement and matrix phases of the composites. Results were validated through FEM simulations and theoretical predictions, demonstrating a satisfactory level of agreement. Furthermore, this paper provides a comprehensive depiction of micro-crack initiation and propagation, along with various fracture modes, including matrix and fiber cracking, as well as matrix/fiber debonding, for both composite types.
期刊介绍:
GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research.
SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including:
(a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc.,
(b) Particles representing material phases in continua at the meso-, micro-and nano-scale and
(c) Particles as a discretization unit in continua and discontinua in numerical methods such as
Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.