{"title":"用于求解梯度洗脱色谱非线性模型的非连续伽勒金有限元法","authors":"Shamsul Qamar, Sadia Perveen, Kazil Tabib, Nazia Rehman, Fouzia Rehman","doi":"10.1007/s10450-024-00490-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a discontinuous Galerkin (DG) finite element method is employed to solve the nonlinear equilibrium dispersive (ED) model, for the simulation of multi-component gradient elution chromatography using a liquid mobile phase in fixed-bed columns. The ED model comprises a set of coupled nonlinear convection-dominated partial differential equations integrated with nonlinear Langmuir type adsorption isotherms. Gradient elution, characterized by the gradual increase in eluent strength through variations in the chemical composition of the mobile phase, is analyzed. An investigation into the advantages of gradient elution chromatography in comparison to isocratic elution is conducted via a sequence of numerical test experiments that assess the influence of solvent strength, modulator concentration, gradient start and end times, and gradient slope on the elution profiles and temporal moments. It has been observed that gradient elution chromatography influences the behavior, shape, and propagation speed of elution profiles, which subsequently affect the cycle time and column efficiency. The results of this study provide significant insights that are critical for understanding, optimizing, and enhancing gradient elution chromatography.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"30 6","pages":"1161 - 1174"},"PeriodicalIF":3.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discontinuous Galerkin finite element method for solving non-linear model of gradient elution chromatography\",\"authors\":\"Shamsul Qamar, Sadia Perveen, Kazil Tabib, Nazia Rehman, Fouzia Rehman\",\"doi\":\"10.1007/s10450-024-00490-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, a discontinuous Galerkin (DG) finite element method is employed to solve the nonlinear equilibrium dispersive (ED) model, for the simulation of multi-component gradient elution chromatography using a liquid mobile phase in fixed-bed columns. The ED model comprises a set of coupled nonlinear convection-dominated partial differential equations integrated with nonlinear Langmuir type adsorption isotherms. Gradient elution, characterized by the gradual increase in eluent strength through variations in the chemical composition of the mobile phase, is analyzed. An investigation into the advantages of gradient elution chromatography in comparison to isocratic elution is conducted via a sequence of numerical test experiments that assess the influence of solvent strength, modulator concentration, gradient start and end times, and gradient slope on the elution profiles and temporal moments. It has been observed that gradient elution chromatography influences the behavior, shape, and propagation speed of elution profiles, which subsequently affect the cycle time and column efficiency. The results of this study provide significant insights that are critical for understanding, optimizing, and enhancing gradient elution chromatography.</p></div>\",\"PeriodicalId\":458,\"journal\":{\"name\":\"Adsorption\",\"volume\":\"30 6\",\"pages\":\"1161 - 1174\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adsorption\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10450-024-00490-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-024-00490-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Discontinuous Galerkin finite element method for solving non-linear model of gradient elution chromatography
In this study, a discontinuous Galerkin (DG) finite element method is employed to solve the nonlinear equilibrium dispersive (ED) model, for the simulation of multi-component gradient elution chromatography using a liquid mobile phase in fixed-bed columns. The ED model comprises a set of coupled nonlinear convection-dominated partial differential equations integrated with nonlinear Langmuir type adsorption isotherms. Gradient elution, characterized by the gradual increase in eluent strength through variations in the chemical composition of the mobile phase, is analyzed. An investigation into the advantages of gradient elution chromatography in comparison to isocratic elution is conducted via a sequence of numerical test experiments that assess the influence of solvent strength, modulator concentration, gradient start and end times, and gradient slope on the elution profiles and temporal moments. It has been observed that gradient elution chromatography influences the behavior, shape, and propagation speed of elution profiles, which subsequently affect the cycle time and column efficiency. The results of this study provide significant insights that are critical for understanding, optimizing, and enhancing gradient elution chromatography.
期刊介绍:
The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news.
Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design.
Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.