边缘物联网系统中的资源感知联合数据分析

Hana Khamfroush
{"title":"边缘物联网系统中的资源感知联合数据分析","authors":"Hana Khamfroush","doi":"10.1609/aaaiss.v3i1.31219","DOIUrl":null,"url":null,"abstract":"In a resource constrained environment like Internet-of-Things (IoT) systems, it is critical to make optimal decisions on how much resources\nto allocate pre-processing and how much to allocate to model training, and which specific combination of preprocessing and learning should be selected. \nThis talk first, provides an overview of some initial steps we took towards developing federated data pre-processing in IoT environments, and then a\nvisionary overview of potential research problems related to developing an integrated resource-aware and Quality-of-Service (QoS)-aware data pre-processing and model training system is provided.","PeriodicalId":516827,"journal":{"name":"Proceedings of the AAAI Symposium Series","volume":"99 35","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resource-aware Federated Data Analytics in Edge-Enabled IoT Systems\",\"authors\":\"Hana Khamfroush\",\"doi\":\"10.1609/aaaiss.v3i1.31219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a resource constrained environment like Internet-of-Things (IoT) systems, it is critical to make optimal decisions on how much resources\\nto allocate pre-processing and how much to allocate to model training, and which specific combination of preprocessing and learning should be selected. \\nThis talk first, provides an overview of some initial steps we took towards developing federated data pre-processing in IoT environments, and then a\\nvisionary overview of potential research problems related to developing an integrated resource-aware and Quality-of-Service (QoS)-aware data pre-processing and model training system is provided.\",\"PeriodicalId\":516827,\"journal\":{\"name\":\"Proceedings of the AAAI Symposium Series\",\"volume\":\"99 35\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the AAAI Symposium Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aaaiss.v3i1.31219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI Symposium Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaaiss.v3i1.31219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在物联网(IoT)系统这种资源受限的环境中,关键是要就分配多少资源进行预处理、分配多少资源进行模型训练以及选择预处理和学习的具体组合做出最佳决策。本讲座首先概述了我们为在物联网环境中开发联合数据预处理而采取的一些初步措施,然后概述了与开发综合资源感知和服务质量(QoS)感知的数据预处理和模型训练系统有关的潜在研究问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Resource-aware Federated Data Analytics in Edge-Enabled IoT Systems
In a resource constrained environment like Internet-of-Things (IoT) systems, it is critical to make optimal decisions on how much resources to allocate pre-processing and how much to allocate to model training, and which specific combination of preprocessing and learning should be selected. This talk first, provides an overview of some initial steps we took towards developing federated data pre-processing in IoT environments, and then a visionary overview of potential research problems related to developing an integrated resource-aware and Quality-of-Service (QoS)-aware data pre-processing and model training system is provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modes of Tracking Mal-Info in Social Media with AI/ML Tools to Help Mitigate Harmful GenAI for Improved Societal Well Being Embodying Human-Like Modes of Balance Control Through Human-In-the-Loop Dyadic Learning Constructing Deep Concepts through Shallow Search Implications of Identity in AI: Creators, Creations, and Consequences ASMR: Aggregated Semantic Matching Retrieval Unleashing Commonsense Ability of LLM through Open-Ended Question Answering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1