{"title":"用于半导体电子显微图像分析的多模式指令调整小型语言和视觉助手","authors":"Sagar Srinivas Sakhinana, Geethan Sannidhi, Venkataramana Runkana","doi":"10.1609/aaaiss.v3i1.31205","DOIUrl":null,"url":null,"abstract":"We present a novel framework for analyzing and interpreting electron microscopy images in semiconductor manufacturing using vision-language instruction tuning. The framework employs a unique teacher-student approach, leveraging pretrained multimodal large language models such as GPT-4 to generate instruction-following data for zero-shot visual question answering (VQA) and classification tasks, customizing smaller multimodal models (SMMs) for microscopy image analysis, resulting in an instruction tuned language-and-vision assistant. Our framework merges knowledge engineering with machine learning to integrate domain-specific expertise from larger to smaller multimodal models within this specialized field, greatly reducing the need for extensive human labeling. Our study presents a secure, cost-effective, and customizable approach for analyzing microscopy images, addressing the challenges of adopting proprietary models in semiconductor manufacturing.","PeriodicalId":516827,"journal":{"name":"Proceedings of the AAAI Symposium Series","volume":"80 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Modal Instruction-Tuning Small-Scale Language-and-Vision Assistant for Semiconductor Electron Micrograph Analysis\",\"authors\":\"Sagar Srinivas Sakhinana, Geethan Sannidhi, Venkataramana Runkana\",\"doi\":\"10.1609/aaaiss.v3i1.31205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel framework for analyzing and interpreting electron microscopy images in semiconductor manufacturing using vision-language instruction tuning. The framework employs a unique teacher-student approach, leveraging pretrained multimodal large language models such as GPT-4 to generate instruction-following data for zero-shot visual question answering (VQA) and classification tasks, customizing smaller multimodal models (SMMs) for microscopy image analysis, resulting in an instruction tuned language-and-vision assistant. Our framework merges knowledge engineering with machine learning to integrate domain-specific expertise from larger to smaller multimodal models within this specialized field, greatly reducing the need for extensive human labeling. Our study presents a secure, cost-effective, and customizable approach for analyzing microscopy images, addressing the challenges of adopting proprietary models in semiconductor manufacturing.\",\"PeriodicalId\":516827,\"journal\":{\"name\":\"Proceedings of the AAAI Symposium Series\",\"volume\":\"80 14\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the AAAI Symposium Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aaaiss.v3i1.31205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI Symposium Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaaiss.v3i1.31205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-Modal Instruction-Tuning Small-Scale Language-and-Vision Assistant for Semiconductor Electron Micrograph Analysis
We present a novel framework for analyzing and interpreting electron microscopy images in semiconductor manufacturing using vision-language instruction tuning. The framework employs a unique teacher-student approach, leveraging pretrained multimodal large language models such as GPT-4 to generate instruction-following data for zero-shot visual question answering (VQA) and classification tasks, customizing smaller multimodal models (SMMs) for microscopy image analysis, resulting in an instruction tuned language-and-vision assistant. Our framework merges knowledge engineering with machine learning to integrate domain-specific expertise from larger to smaller multimodal models within this specialized field, greatly reducing the need for extensive human labeling. Our study presents a secure, cost-effective, and customizable approach for analyzing microscopy images, addressing the challenges of adopting proprietary models in semiconductor manufacturing.