Elena Cvetkovska Bogatinovska, Nikola Geškovski, Gjorgji Petrushevski, Viktor Stefov
{"title":"用于快速筛选和预测药物制剂前研究中固体相容性的多变量分析--为机器学习铺平道路","authors":"Elena Cvetkovska Bogatinovska, Nikola Geškovski, Gjorgji Petrushevski, Viktor Stefov","doi":"10.20450/mjcce.2024.2838","DOIUrl":null,"url":null,"abstract":"Multivariate analysis models were developed to evaluate the results obtained from a compatibility study designed for ibuprofen with a large group of different types of excipients, as a possible approach for rapid screening of the incompatibility between the active pharmaceutical ingredient (API) and excipients. The solid-state characterization of the binary mixtures was performed by Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) using SIMCA® software were applied for evaluation of the experimentally obtained results. The optimal PCA model for the FTIR spectra explains 96.2 % of the variations in the dataset with good statistical indicators (R2X = 0.960, Q2 = 0.900), which was also the case for the PCA model for the DSC curves (R2X = 0.981, Q2 = 0.866). The applied PLS-DA models have shown similar behaviour to the PCA. Moreover, the main spectral variations in the FTIR spectra and the thermal events in the DSC data were attributed the highest variable importance for the projection (VIP) scores in the corresponding VIP plots, confirming the model capability for predicting ibuprofen interactions. Furthermore, the prediction power of the optimal models for FTIR and DSC experimental data was evaluated by the root mean square error of prediction (RMSEP) of 0.10 and 0.16, respectively. The obtained results demonstrated the potential of multivariate statistical analysis as a machine learning-based technique for screening and prediction of ibuprofen-excipients solid-state compatibility in the preformulation phase of the pharmaceutical development of dosage forms.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Мultivariate analysis for rapid screening and prediction of solid-state compatibility in pharmaceutical preformulation studies-paving the road for machine learning\",\"authors\":\"Elena Cvetkovska Bogatinovska, Nikola Geškovski, Gjorgji Petrushevski, Viktor Stefov\",\"doi\":\"10.20450/mjcce.2024.2838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multivariate analysis models were developed to evaluate the results obtained from a compatibility study designed for ibuprofen with a large group of different types of excipients, as a possible approach for rapid screening of the incompatibility between the active pharmaceutical ingredient (API) and excipients. The solid-state characterization of the binary mixtures was performed by Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) using SIMCA® software were applied for evaluation of the experimentally obtained results. The optimal PCA model for the FTIR spectra explains 96.2 % of the variations in the dataset with good statistical indicators (R2X = 0.960, Q2 = 0.900), which was also the case for the PCA model for the DSC curves (R2X = 0.981, Q2 = 0.866). The applied PLS-DA models have shown similar behaviour to the PCA. Moreover, the main spectral variations in the FTIR spectra and the thermal events in the DSC data were attributed the highest variable importance for the projection (VIP) scores in the corresponding VIP plots, confirming the model capability for predicting ibuprofen interactions. Furthermore, the prediction power of the optimal models for FTIR and DSC experimental data was evaluated by the root mean square error of prediction (RMSEP) of 0.10 and 0.16, respectively. The obtained results demonstrated the potential of multivariate statistical analysis as a machine learning-based technique for screening and prediction of ibuprofen-excipients solid-state compatibility in the preformulation phase of the pharmaceutical development of dosage forms.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.20450/mjcce.2024.2838\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.20450/mjcce.2024.2838","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Мultivariate analysis for rapid screening and prediction of solid-state compatibility in pharmaceutical preformulation studies-paving the road for machine learning
Multivariate analysis models were developed to evaluate the results obtained from a compatibility study designed for ibuprofen with a large group of different types of excipients, as a possible approach for rapid screening of the incompatibility between the active pharmaceutical ingredient (API) and excipients. The solid-state characterization of the binary mixtures was performed by Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) using SIMCA® software were applied for evaluation of the experimentally obtained results. The optimal PCA model for the FTIR spectra explains 96.2 % of the variations in the dataset with good statistical indicators (R2X = 0.960, Q2 = 0.900), which was also the case for the PCA model for the DSC curves (R2X = 0.981, Q2 = 0.866). The applied PLS-DA models have shown similar behaviour to the PCA. Moreover, the main spectral variations in the FTIR spectra and the thermal events in the DSC data were attributed the highest variable importance for the projection (VIP) scores in the corresponding VIP plots, confirming the model capability for predicting ibuprofen interactions. Furthermore, the prediction power of the optimal models for FTIR and DSC experimental data was evaluated by the root mean square error of prediction (RMSEP) of 0.10 and 0.16, respectively. The obtained results demonstrated the potential of multivariate statistical analysis as a machine learning-based technique for screening and prediction of ibuprofen-excipients solid-state compatibility in the preformulation phase of the pharmaceutical development of dosage forms.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.