{"title":"考虑参数不确定性的基于 CCZM 的风力涡轮机叶片粘接接头疲劳分析和可靠性评估","authors":"Zheng Liu, Haodong Liu, Zhenjiang Shao, Jinlong Liang, Ruizhi Tang","doi":"10.1002/qre.3564","DOIUrl":null,"url":null,"abstract":"Wind turbine blades are complex structures composed of multiple bonded components. The fatigue performance of these adhesive joints is crucial for ensuring operational safety over the blade's lifespan. Traditional structural fatigue analysis methods are inadequate for evaluating the fatigue properties of these joints due to the unique characteristics of adhesive materials. Variations in material and dimensional parameters, as well as fluctuating operational loads, further complicate the fatigue analysis of adhesive joints in wind turbine blades. To tackle this issue, this study introduces a fatigue analysis and reliability assessment method for the adhesive joints of wind turbine blades, employing the Cyclic Cohesive Zone Model (CCZM) and accounting for parameter uncertainties. Specifically, a novel methodology for fatigue analysis based on the CCZM is presented. The methodology is programmatically implemented to obtain a fatigue life dataset through multiple simulations, considering uncertainties in material parameters, adhesive dimensions, and loads. Subsequently, a fatigue reliability model is formulated to evaluate the fatigue reliability of adhesive joints in wind turbine blades under different parameter conditions, and the sensitivity of fatigue reliability to each parameter is investigated. The findings offer valuable insights for improving the safety and reliability of adhesive structures in wind turbine blades.","PeriodicalId":56088,"journal":{"name":"Quality and Reliability Engineering International","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CCZM‐based fatigue analysis and reliability assessment for wind turbine blade adhesive joints considering parameter uncertainties\",\"authors\":\"Zheng Liu, Haodong Liu, Zhenjiang Shao, Jinlong Liang, Ruizhi Tang\",\"doi\":\"10.1002/qre.3564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wind turbine blades are complex structures composed of multiple bonded components. The fatigue performance of these adhesive joints is crucial for ensuring operational safety over the blade's lifespan. Traditional structural fatigue analysis methods are inadequate for evaluating the fatigue properties of these joints due to the unique characteristics of adhesive materials. Variations in material and dimensional parameters, as well as fluctuating operational loads, further complicate the fatigue analysis of adhesive joints in wind turbine blades. To tackle this issue, this study introduces a fatigue analysis and reliability assessment method for the adhesive joints of wind turbine blades, employing the Cyclic Cohesive Zone Model (CCZM) and accounting for parameter uncertainties. Specifically, a novel methodology for fatigue analysis based on the CCZM is presented. The methodology is programmatically implemented to obtain a fatigue life dataset through multiple simulations, considering uncertainties in material parameters, adhesive dimensions, and loads. Subsequently, a fatigue reliability model is formulated to evaluate the fatigue reliability of adhesive joints in wind turbine blades under different parameter conditions, and the sensitivity of fatigue reliability to each parameter is investigated. The findings offer valuable insights for improving the safety and reliability of adhesive structures in wind turbine blades.\",\"PeriodicalId\":56088,\"journal\":{\"name\":\"Quality and Reliability Engineering International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quality and Reliability Engineering International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/qre.3564\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality and Reliability Engineering International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/qre.3564","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
CCZM‐based fatigue analysis and reliability assessment for wind turbine blade adhesive joints considering parameter uncertainties
Wind turbine blades are complex structures composed of multiple bonded components. The fatigue performance of these adhesive joints is crucial for ensuring operational safety over the blade's lifespan. Traditional structural fatigue analysis methods are inadequate for evaluating the fatigue properties of these joints due to the unique characteristics of adhesive materials. Variations in material and dimensional parameters, as well as fluctuating operational loads, further complicate the fatigue analysis of adhesive joints in wind turbine blades. To tackle this issue, this study introduces a fatigue analysis and reliability assessment method for the adhesive joints of wind turbine blades, employing the Cyclic Cohesive Zone Model (CCZM) and accounting for parameter uncertainties. Specifically, a novel methodology for fatigue analysis based on the CCZM is presented. The methodology is programmatically implemented to obtain a fatigue life dataset through multiple simulations, considering uncertainties in material parameters, adhesive dimensions, and loads. Subsequently, a fatigue reliability model is formulated to evaluate the fatigue reliability of adhesive joints in wind turbine blades under different parameter conditions, and the sensitivity of fatigue reliability to each parameter is investigated. The findings offer valuable insights for improving the safety and reliability of adhesive structures in wind turbine blades.
期刊介绍:
Quality and Reliability Engineering International is a journal devoted to practical engineering aspects of quality and reliability. A refereed technical journal published eight times per year, it covers the development and practical application of existing theoretical methods, research and industrial practices. Articles in the journal will be concerned with case studies, tutorial-type reviews and also with applications of new or well-known theory to the solution of actual quality and reliability problems in engineering.
Papers describing the use of mathematical and statistical tools to solve real life industrial problems are encouraged, provided that the emphasis is placed on practical applications and demonstrated case studies.
The scope of the journal is intended to include components, physics of failure, equipment and systems from the fields of electronic, electrical, mechanical and systems engineering. The areas of communications, aerospace, automotive, railways, shipboard equipment, control engineering and consumer products are all covered by the journal.
Quality and reliability of hardware as well as software are covered. Papers on software engineering and its impact on product quality and reliability are encouraged. The journal will also cover the management of quality and reliability in the engineering industry.
Special issues on a variety of key topics are published every year and contribute to the enhancement of Quality and Reliability Engineering International as a major reference in its field.