基于梯度的方法,利用功能或纵向协变量充分降维

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY Scandinavian Journal of Statistics Pub Date : 2024-05-19 DOI:10.1111/sjos.12724
Ming-Yueh Huang, Kwun Chuen Gary Chan
{"title":"基于梯度的方法,利用功能或纵向协变量充分降维","authors":"Ming-Yueh Huang, Kwun Chuen Gary Chan","doi":"10.1111/sjos.12724","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on the sufficient dimension reduction problem in regression analysis with real‐valued response and functional or longitudinal covariates. We propose a new method based on gradients of the conditional distribution function to estimate the sufficient dimension reduction subspace. While existing inverse‐regression‐type methods relies on a linearity condition, our method is based on the gradient of conditional distribution function and its validity only requires smoothness conditions on the population parameters. Practically, the proposed estimator can be obtained by standard algorithm of functional principal component analysis. The proposed method is demonstrated through extensive simulations and two empirical examples.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gradient‐based approach to sufficient dimension reduction with functional or longitudinal covariates\",\"authors\":\"Ming-Yueh Huang, Kwun Chuen Gary Chan\",\"doi\":\"10.1111/sjos.12724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we focus on the sufficient dimension reduction problem in regression analysis with real‐valued response and functional or longitudinal covariates. We propose a new method based on gradients of the conditional distribution function to estimate the sufficient dimension reduction subspace. While existing inverse‐regression‐type methods relies on a linearity condition, our method is based on the gradient of conditional distribution function and its validity only requires smoothness conditions on the population parameters. Practically, the proposed estimator can be obtained by standard algorithm of functional principal component analysis. The proposed method is demonstrated through extensive simulations and two empirical examples.\",\"PeriodicalId\":49567,\"journal\":{\"name\":\"Scandinavian Journal of Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scandinavian Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/sjos.12724\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/sjos.12724","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们重点研究了实值响应与函数或纵向协变量回归分析中的充分降维问题。我们提出了一种基于条件分布函数梯度来估计充分降维子空间的新方法。现有的反回归类型方法依赖于线性条件,而我们的方法基于条件分布函数的梯度,其有效性只需要群体参数的平滑性条件。实际上,所提出的估计器可以通过函数主成分分析的标准算法获得。我们通过大量模拟和两个经验实例来证明所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gradient‐based approach to sufficient dimension reduction with functional or longitudinal covariates
In this paper, we focus on the sufficient dimension reduction problem in regression analysis with real‐valued response and functional or longitudinal covariates. We propose a new method based on gradients of the conditional distribution function to estimate the sufficient dimension reduction subspace. While existing inverse‐regression‐type methods relies on a linearity condition, our method is based on the gradient of conditional distribution function and its validity only requires smoothness conditions on the population parameters. Practically, the proposed estimator can be obtained by standard algorithm of functional principal component analysis. The proposed method is demonstrated through extensive simulations and two empirical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scandinavian Journal of Statistics
Scandinavian Journal of Statistics 数学-统计学与概率论
CiteScore
1.80
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The Scandinavian Journal of Statistics is internationally recognised as one of the leading statistical journals in the world. It was founded in 1974 by four Scandinavian statistical societies. Today more than eighty per cent of the manuscripts are submitted from outside Scandinavia. It is an international journal devoted to reporting significant and innovative original contributions to statistical methodology, both theory and applications. The journal specializes in statistical modelling showing particular appreciation of the underlying substantive research problems. The emergence of specialized methods for analysing longitudinal and spatial data is just one example of an area of important methodological development in which the Scandinavian Journal of Statistics has a particular niche.
期刊最新文献
Model‐based clustering in simple hypergraphs through a stochastic blockmodel Some approximations to the path formula for some nonlinear models Tobit models for count time series On some publications of Sir David Cox Looking back: Selected contributions by C. R. Rao to multivariate analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1