使用机器学习算法的作物推荐系统

Ms. Suguna, Prakalya Murali, Pradhusha Ayyasamy, Obuli Obuli
{"title":"使用机器学习算法的作物推荐系统","authors":"Ms. Suguna, Prakalya Murali, Pradhusha Ayyasamy, Obuli Obuli","doi":"10.47392/irjaeh.2024.0170","DOIUrl":null,"url":null,"abstract":"This study aims to develop an intelligent agricultural yield recommendation framework leveraging the capabilities of AI algorithms. The proposed framework takes yield efficiency and optimal growing seasons as crucial factors in generating appropriate crop recommendations. We have put forth four widely used models, namely Linear Regression (LR) and Multi-Layer Perceptron (MLP), which were trained and evaluated on a comprehensive dataset comprising historical agricultural data encompassing various features such as climatic factors, soil properties, and geographical variables. Furthermore, the data was segmented based on seasonal patterns to provide crop suggestions tailored to specific time periods. The performance of these models was assessed using standard metrics, and an ensemble approach was considered to enhance the system's robustness. Ultimately, the developed framework offers farmers and agricultural professionals a valuable tool for making informed decisions, optimizing crop selection, and enhancing overall agricultural productivity.","PeriodicalId":517766,"journal":{"name":"International Research Journal on Advanced Engineering Hub (IRJAEH)","volume":"103 34","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crop Recommendation System Using Machine Learning Algorithm\",\"authors\":\"Ms. Suguna, Prakalya Murali, Pradhusha Ayyasamy, Obuli Obuli\",\"doi\":\"10.47392/irjaeh.2024.0170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to develop an intelligent agricultural yield recommendation framework leveraging the capabilities of AI algorithms. The proposed framework takes yield efficiency and optimal growing seasons as crucial factors in generating appropriate crop recommendations. We have put forth four widely used models, namely Linear Regression (LR) and Multi-Layer Perceptron (MLP), which were trained and evaluated on a comprehensive dataset comprising historical agricultural data encompassing various features such as climatic factors, soil properties, and geographical variables. Furthermore, the data was segmented based on seasonal patterns to provide crop suggestions tailored to specific time periods. The performance of these models was assessed using standard metrics, and an ensemble approach was considered to enhance the system's robustness. Ultimately, the developed framework offers farmers and agricultural professionals a valuable tool for making informed decisions, optimizing crop selection, and enhancing overall agricultural productivity.\",\"PeriodicalId\":517766,\"journal\":{\"name\":\"International Research Journal on Advanced Engineering Hub (IRJAEH)\",\"volume\":\"103 34\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Research Journal on Advanced Engineering Hub (IRJAEH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47392/irjaeh.2024.0170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Research Journal on Advanced Engineering Hub (IRJAEH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47392/irjaeh.2024.0170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在利用人工智能算法的能力,开发一个智能农业产量推荐框架。建议的框架将产量效率和最佳生长季节作为生成适当作物建议的关键因素。我们提出了四种广泛使用的模型,即线性回归(LR)和多层感知器(MLP),并在一个综合数据集上对其进行了训练和评估,该数据集由历史农业数据组成,包含气候因素、土壤特性和地理变量等各种特征。此外,还根据季节模式对数据进行了细分,以提供针对特定时间段的作物建议。使用标准指标对这些模型的性能进行了评估,并考虑采用集合方法来增强系统的鲁棒性。最终,所开发的框架为农民和农业专业人员提供了一个宝贵的工具,帮助他们做出明智的决策、优化作物选择并提高整体农业生产率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Crop Recommendation System Using Machine Learning Algorithm
This study aims to develop an intelligent agricultural yield recommendation framework leveraging the capabilities of AI algorithms. The proposed framework takes yield efficiency and optimal growing seasons as crucial factors in generating appropriate crop recommendations. We have put forth four widely used models, namely Linear Regression (LR) and Multi-Layer Perceptron (MLP), which were trained and evaluated on a comprehensive dataset comprising historical agricultural data encompassing various features such as climatic factors, soil properties, and geographical variables. Furthermore, the data was segmented based on seasonal patterns to provide crop suggestions tailored to specific time periods. The performance of these models was assessed using standard metrics, and an ensemble approach was considered to enhance the system's robustness. Ultimately, the developed framework offers farmers and agricultural professionals a valuable tool for making informed decisions, optimizing crop selection, and enhancing overall agricultural productivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Load Balancing in Cloud Computing: Improving Efficiency and Performance in Real Life Applications Optimizing Renewable Energy Integration in Green Building Projects: Addressing Barriers and Enhancing Energy Performance Drone Technology in Construction Industry Addressing Workplace Harassment and Discrimination: Strategies for Creating Inclusive Environments in Construction Engineering Smart Plant Health Control System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1