在计算方法下构建非线性分数凯拉特-X 动力方程的孤子波结构

M. Iqbal, Dianchen Lu, A. Seadawy, F. A. Alomari, Zhanar Umurzakhova, R. Myrzakulov
{"title":"在计算方法下构建非线性分数凯拉特-X 动力方程的孤子波结构","authors":"M. Iqbal, Dianchen Lu, A. Seadawy, F. A. Alomari, Zhanar Umurzakhova, R. Myrzakulov","doi":"10.1142/s0217984924503962","DOIUrl":null,"url":null,"abstract":"In this paper, the nonlinear fractional Kairat-X equation is investigated on the basis of computational simulation. The nonlinear fractional Kairat-X equation is an integrable equation and is used to explain the differential geometry of curves and equivalence aspects. Several kinds of solitary wave structures of the nonlinear fractional Kairat-X equation are established successfully via the implantation of the extended simple equation method. Here, we explore the interesting, novel and general solutions in trigonometric, exponential, and rational types, which represent periodic wave solitons, mixed solitons in the shape of bright–dark solutions, kink wave solitons, peakon bright and dark solitons, anti-kink wave solutions, bright solitons, dark solitons, and solitary wave structure. The physical structures of secured results, aided by numerical simulation, have numerous applications in applied sciences such as optical fiber, geophysics, laser optics, mathematical physics, nonlinear optics, nonlinear dynamics, communication system, and engineering. This study explores the physical behavior of models through the visualization of solutions in contour, 2D and 3D plots by revealing that these solutions yield profitable results in the field of mathematical physics. The study demonstrates that the proposed technique is more reliable, efficient, and powerful in analyzing nonlinear evolution equations in various domains of science.","PeriodicalId":503716,"journal":{"name":"Modern Physics Letters B","volume":"101 51","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing the soliton wave structure to the nonlinear fractional Kairat-X dynamical equation under computational approach\",\"authors\":\"M. Iqbal, Dianchen Lu, A. Seadawy, F. A. Alomari, Zhanar Umurzakhova, R. Myrzakulov\",\"doi\":\"10.1142/s0217984924503962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the nonlinear fractional Kairat-X equation is investigated on the basis of computational simulation. The nonlinear fractional Kairat-X equation is an integrable equation and is used to explain the differential geometry of curves and equivalence aspects. Several kinds of solitary wave structures of the nonlinear fractional Kairat-X equation are established successfully via the implantation of the extended simple equation method. Here, we explore the interesting, novel and general solutions in trigonometric, exponential, and rational types, which represent periodic wave solitons, mixed solitons in the shape of bright–dark solutions, kink wave solitons, peakon bright and dark solitons, anti-kink wave solutions, bright solitons, dark solitons, and solitary wave structure. The physical structures of secured results, aided by numerical simulation, have numerous applications in applied sciences such as optical fiber, geophysics, laser optics, mathematical physics, nonlinear optics, nonlinear dynamics, communication system, and engineering. This study explores the physical behavior of models through the visualization of solutions in contour, 2D and 3D plots by revealing that these solutions yield profitable results in the field of mathematical physics. The study demonstrates that the proposed technique is more reliable, efficient, and powerful in analyzing nonlinear evolution equations in various domains of science.\",\"PeriodicalId\":503716,\"journal\":{\"name\":\"Modern Physics Letters B\",\"volume\":\"101 51\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Physics Letters B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217984924503962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0217984924503962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文在计算模拟的基础上研究了非线性分数 Kairat-X 方程。非线性分数 Kairat-X 方程是一个可积分方程,用于解释曲线的微分几何和等价方面。通过植入扩展简单方程方法,成功建立了非线性分数 Kairat-X 方程的几种孤波结构。在此,我们探索了有趣的、新颖的和一般的三角、指数和有理类型的解,它们代表了周期波孤子、明暗混合孤子、扭结波孤子、峰值明暗孤子、反扭结波解、明孤子、暗孤子和孤波结构。在数值模拟的辅助下,获得结果的物理结构在光纤、地球物理、激光光学、数学物理、非线性光学、非线性动力学、通信系统和工程等应用科学领域有着广泛的应用。本研究通过对等高线、二维和三维图解的可视化来探索模型的物理行为,揭示了这些解在数学物理领域产生的有利结果。研究表明,在分析各个科学领域的非线性演化方程时,所提出的技术更加可靠、高效和强大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Constructing the soliton wave structure to the nonlinear fractional Kairat-X dynamical equation under computational approach
In this paper, the nonlinear fractional Kairat-X equation is investigated on the basis of computational simulation. The nonlinear fractional Kairat-X equation is an integrable equation and is used to explain the differential geometry of curves and equivalence aspects. Several kinds of solitary wave structures of the nonlinear fractional Kairat-X equation are established successfully via the implantation of the extended simple equation method. Here, we explore the interesting, novel and general solutions in trigonometric, exponential, and rational types, which represent periodic wave solitons, mixed solitons in the shape of bright–dark solutions, kink wave solitons, peakon bright and dark solitons, anti-kink wave solutions, bright solitons, dark solitons, and solitary wave structure. The physical structures of secured results, aided by numerical simulation, have numerous applications in applied sciences such as optical fiber, geophysics, laser optics, mathematical physics, nonlinear optics, nonlinear dynamics, communication system, and engineering. This study explores the physical behavior of models through the visualization of solutions in contour, 2D and 3D plots by revealing that these solutions yield profitable results in the field of mathematical physics. The study demonstrates that the proposed technique is more reliable, efficient, and powerful in analyzing nonlinear evolution equations in various domains of science.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joule heating effects on triple diffusive free convective MHD flow over a convective surface: A Lie-group transformation analysis Preparation, structure and spectral characteristics of Zinc tellurite glasses system doped with different concentrations of Tm3+ Impacts of activation energy and electroosmosis on peristaltic motion of micropolar Newtonian nanofluid inside a microchannel Viscous dissipation and Joule heating in case of variable electrical conductivity Carreau–Yasuda nanofluid flow in a complex wavy asymmetric channel through porous media Stability analysis and retrieval of new solitary waves of (2+1)- and (3+1)-dimensional potential Kadomtsev–Petviashvili and B-type Kadomtsev–Petviashvili equations using auxiliary equation technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1