{"title":"暗物质缺乏星系 NGC 1052-DF4 的球状星团群的旋转:对总质量的影响","authors":"Yuan Li, B. Brewer, G. F. Lewis","doi":"10.1017/pasa.2024.42","DOIUrl":null,"url":null,"abstract":"\n We explore the globular cluster population of NGC 1052-DF4, a dark matter deficient galaxy, using Bayesian inference to search for the presence of rotation. The existence of such a rotating component is relevant to the estimation of the mass of the galaxy, and therefore the question of whether NGC 1052-DF4 is truly deficient of dark matter,similar to NGC 1052-DF2, another galaxy in the same group. The rotational characteristics of seven globular clusters in NGC 1052-DF4 were investigated, finding that a non-rotating kinematic model has a higher Bayesian evidence than a rotating model, by a factor of approximately 2.5. In addition, we find that under the assumption of rotation, its amplitude must be small. This distinct lack of rotation strengthens the case that, based on its intrinsic velocity dispersion, NGC 1052-DF4 is a truly dark matter deficient galaxy.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rotation of the Globular Cluster Population of the Dark Matter Deficient Galaxy NGC 1052-DF4: Implication for the total mass\",\"authors\":\"Yuan Li, B. Brewer, G. F. Lewis\",\"doi\":\"10.1017/pasa.2024.42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We explore the globular cluster population of NGC 1052-DF4, a dark matter deficient galaxy, using Bayesian inference to search for the presence of rotation. The existence of such a rotating component is relevant to the estimation of the mass of the galaxy, and therefore the question of whether NGC 1052-DF4 is truly deficient of dark matter,similar to NGC 1052-DF2, another galaxy in the same group. The rotational characteristics of seven globular clusters in NGC 1052-DF4 were investigated, finding that a non-rotating kinematic model has a higher Bayesian evidence than a rotating model, by a factor of approximately 2.5. In addition, we find that under the assumption of rotation, its amplitude must be small. This distinct lack of rotation strengthens the case that, based on its intrinsic velocity dispersion, NGC 1052-DF4 is a truly dark matter deficient galaxy.\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1017/pasa.2024.42\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/pasa.2024.42","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Rotation of the Globular Cluster Population of the Dark Matter Deficient Galaxy NGC 1052-DF4: Implication for the total mass
We explore the globular cluster population of NGC 1052-DF4, a dark matter deficient galaxy, using Bayesian inference to search for the presence of rotation. The existence of such a rotating component is relevant to the estimation of the mass of the galaxy, and therefore the question of whether NGC 1052-DF4 is truly deficient of dark matter,similar to NGC 1052-DF2, another galaxy in the same group. The rotational characteristics of seven globular clusters in NGC 1052-DF4 were investigated, finding that a non-rotating kinematic model has a higher Bayesian evidence than a rotating model, by a factor of approximately 2.5. In addition, we find that under the assumption of rotation, its amplitude must be small. This distinct lack of rotation strengthens the case that, based on its intrinsic velocity dispersion, NGC 1052-DF4 is a truly dark matter deficient galaxy.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.