Andrea Mendez Colmenares , Michael L. Thomas , Charles Anderson , David B. Arciniegas , Vince Calhoun , In-Young Choi , Arthur F. Kramer , Kaigang Li , Jongho Lee , Phil Lee , Agnieszka Z. Burzynska
{"title":"测试结构断裂假说:髓鞘含量与健康老年人的记忆力有关","authors":"Andrea Mendez Colmenares , Michael L. Thomas , Charles Anderson , David B. Arciniegas , Vince Calhoun , In-Young Choi , Arthur F. Kramer , Kaigang Li , Jongho Lee , Phil Lee , Agnieszka Z. Burzynska","doi":"10.1016/j.neurobiolaging.2024.05.013","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p>The \"structural disconnection\" hypothesis of cognitive aging suggests that deterioration of white matter (WM), especially myelin, results in cognitive decline, yet in vivo evidence is inconclusive.</p></div><div><h3>Methods</h3><p>We examined age differences in WM microstructure using Myelin Water Imaging and Diffusion Tensor Imaging in 141 healthy participants (age 20–79). We used the Virginia Cognitive Aging Project and the NIH Toolbox® to generate composites for memory, processing speed, and executive function.</p></div><div><h3>Results</h3><p>Voxel-wise analyses showed that lower myelin water fraction (MWF), predominantly in prefrontal WM, genu of the corpus callosum, and posterior limb of the internal capsule was associated with reduced memory performance after controlling for age, sex, and education. In structural equation modeling, MWF in the prefrontal white matter and genu of the corpus callosum significantly mediated the effect of age on memory, whereas fractional anisotropy (FA) did not.</p></div><div><h3>Discussion</h3><p>Our findings support the disconnection hypothesis, showing that myelin decline contributes to age-related memory loss and opens avenues for interventions targeting myelin health.</p></div>","PeriodicalId":19110,"journal":{"name":"Neurobiology of Aging","volume":"141 ","pages":"Pages 21-33"},"PeriodicalIF":3.7000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0197458024001039/pdfft?md5=7963c6090dbb9f64129e736b2f2616d8&pid=1-s2.0-S0197458024001039-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Testing the structural disconnection hypothesis: Myelin content correlates with memory in healthy aging\",\"authors\":\"Andrea Mendez Colmenares , Michael L. Thomas , Charles Anderson , David B. Arciniegas , Vince Calhoun , In-Young Choi , Arthur F. Kramer , Kaigang Li , Jongho Lee , Phil Lee , Agnieszka Z. Burzynska\",\"doi\":\"10.1016/j.neurobiolaging.2024.05.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Introduction</h3><p>The \\\"structural disconnection\\\" hypothesis of cognitive aging suggests that deterioration of white matter (WM), especially myelin, results in cognitive decline, yet in vivo evidence is inconclusive.</p></div><div><h3>Methods</h3><p>We examined age differences in WM microstructure using Myelin Water Imaging and Diffusion Tensor Imaging in 141 healthy participants (age 20–79). We used the Virginia Cognitive Aging Project and the NIH Toolbox® to generate composites for memory, processing speed, and executive function.</p></div><div><h3>Results</h3><p>Voxel-wise analyses showed that lower myelin water fraction (MWF), predominantly in prefrontal WM, genu of the corpus callosum, and posterior limb of the internal capsule was associated with reduced memory performance after controlling for age, sex, and education. In structural equation modeling, MWF in the prefrontal white matter and genu of the corpus callosum significantly mediated the effect of age on memory, whereas fractional anisotropy (FA) did not.</p></div><div><h3>Discussion</h3><p>Our findings support the disconnection hypothesis, showing that myelin decline contributes to age-related memory loss and opens avenues for interventions targeting myelin health.</p></div>\",\"PeriodicalId\":19110,\"journal\":{\"name\":\"Neurobiology of Aging\",\"volume\":\"141 \",\"pages\":\"Pages 21-33\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0197458024001039/pdfft?md5=7963c6090dbb9f64129e736b2f2616d8&pid=1-s2.0-S0197458024001039-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurobiology of Aging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0197458024001039\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Aging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0197458024001039","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
Testing the structural disconnection hypothesis: Myelin content correlates with memory in healthy aging
Introduction
The "structural disconnection" hypothesis of cognitive aging suggests that deterioration of white matter (WM), especially myelin, results in cognitive decline, yet in vivo evidence is inconclusive.
Methods
We examined age differences in WM microstructure using Myelin Water Imaging and Diffusion Tensor Imaging in 141 healthy participants (age 20–79). We used the Virginia Cognitive Aging Project and the NIH Toolbox® to generate composites for memory, processing speed, and executive function.
Results
Voxel-wise analyses showed that lower myelin water fraction (MWF), predominantly in prefrontal WM, genu of the corpus callosum, and posterior limb of the internal capsule was associated with reduced memory performance after controlling for age, sex, and education. In structural equation modeling, MWF in the prefrontal white matter and genu of the corpus callosum significantly mediated the effect of age on memory, whereas fractional anisotropy (FA) did not.
Discussion
Our findings support the disconnection hypothesis, showing that myelin decline contributes to age-related memory loss and opens avenues for interventions targeting myelin health.
期刊介绍:
Neurobiology of Aging publishes the results of studies in behavior, biochemistry, cell biology, endocrinology, molecular biology, morphology, neurology, neuropathology, pharmacology, physiology and protein chemistry in which the primary emphasis involves mechanisms of nervous system changes with age or diseases associated with age. Reviews and primary research articles are included, occasionally accompanied by open peer commentary. Letters to the Editor and brief communications are also acceptable. Brief reports of highly time-sensitive material are usually treated as rapid communications in which case editorial review is completed within six weeks and publication scheduled for the next available issue.