Laura Valentina Klüner, Kenneth Chan, Charalambos Antoniades
{"title":"利用人工智能研究计算机断层扫描成像中的动脉粥样硬化:最新文献综述","authors":"Laura Valentina Klüner, Kenneth Chan, Charalambos Antoniades","doi":"10.1016/j.atherosclerosis.2024.117580","DOIUrl":null,"url":null,"abstract":"<div><div>With the enormous progress in the field of cardiovascular imaging in recent years, computed tomography (CT) has become readily available to phenotype atherosclerotic coronary artery disease. New analytical methods using artificial intelligence (AI) enable the analysis of complex phenotypic information of atherosclerotic plaques. In particular, deep learning-based approaches using convolutional neural networks (CNNs) facilitate tasks such as lesion detection, segmentation, and classification. New radiotranscriptomic techniques even capture underlying bio-histochemical processes through higher-order structural analysis of voxels on CT images. In the near future, the international large-scale <u>O</u>xford <u>R</u>isk <u>F</u>actors <u>A</u>nd <u>N</u>on-invasive Imaging (ORFAN) study will provide a powerful platform for testing and validating prognostic AI-based models. The goal is the transition of these new approaches from research settings into a clinical workflow.</div><div>In this review, we present an overview of existing AI-based techniques with focus on imaging biomarkers to determine the degree of coronary inflammation, coronary plaques, and the associated risk. Further, current limitations using AI-based approaches as well as the priorities to address these challenges will be discussed. This will pave the way for an AI-enabled risk assessment tool to detect vulnerable atherosclerotic plaques and to guide treatment strategies for patients.</div></div>","PeriodicalId":8623,"journal":{"name":"Atherosclerosis","volume":"398 ","pages":"Article 117580"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using artificial intelligence to study atherosclerosis from computed tomography imaging: A state-of-the-art review of the current literature\",\"authors\":\"Laura Valentina Klüner, Kenneth Chan, Charalambos Antoniades\",\"doi\":\"10.1016/j.atherosclerosis.2024.117580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the enormous progress in the field of cardiovascular imaging in recent years, computed tomography (CT) has become readily available to phenotype atherosclerotic coronary artery disease. New analytical methods using artificial intelligence (AI) enable the analysis of complex phenotypic information of atherosclerotic plaques. In particular, deep learning-based approaches using convolutional neural networks (CNNs) facilitate tasks such as lesion detection, segmentation, and classification. New radiotranscriptomic techniques even capture underlying bio-histochemical processes through higher-order structural analysis of voxels on CT images. In the near future, the international large-scale <u>O</u>xford <u>R</u>isk <u>F</u>actors <u>A</u>nd <u>N</u>on-invasive Imaging (ORFAN) study will provide a powerful platform for testing and validating prognostic AI-based models. The goal is the transition of these new approaches from research settings into a clinical workflow.</div><div>In this review, we present an overview of existing AI-based techniques with focus on imaging biomarkers to determine the degree of coronary inflammation, coronary plaques, and the associated risk. Further, current limitations using AI-based approaches as well as the priorities to address these challenges will be discussed. This will pave the way for an AI-enabled risk assessment tool to detect vulnerable atherosclerotic plaques and to guide treatment strategies for patients.</div></div>\",\"PeriodicalId\":8623,\"journal\":{\"name\":\"Atherosclerosis\",\"volume\":\"398 \",\"pages\":\"Article 117580\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atherosclerosis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021915024001400\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atherosclerosis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021915024001400","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Using artificial intelligence to study atherosclerosis from computed tomography imaging: A state-of-the-art review of the current literature
With the enormous progress in the field of cardiovascular imaging in recent years, computed tomography (CT) has become readily available to phenotype atherosclerotic coronary artery disease. New analytical methods using artificial intelligence (AI) enable the analysis of complex phenotypic information of atherosclerotic plaques. In particular, deep learning-based approaches using convolutional neural networks (CNNs) facilitate tasks such as lesion detection, segmentation, and classification. New radiotranscriptomic techniques even capture underlying bio-histochemical processes through higher-order structural analysis of voxels on CT images. In the near future, the international large-scale Oxford Risk Factors And Non-invasive Imaging (ORFAN) study will provide a powerful platform for testing and validating prognostic AI-based models. The goal is the transition of these new approaches from research settings into a clinical workflow.
In this review, we present an overview of existing AI-based techniques with focus on imaging biomarkers to determine the degree of coronary inflammation, coronary plaques, and the associated risk. Further, current limitations using AI-based approaches as well as the priorities to address these challenges will be discussed. This will pave the way for an AI-enabled risk assessment tool to detect vulnerable atherosclerotic plaques and to guide treatment strategies for patients.
期刊介绍:
Atherosclerosis has an open access mirror journal Atherosclerosis: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Atherosclerosis brings together, from all sources, papers concerned with investigation on atherosclerosis, its risk factors and clinical manifestations. Atherosclerosis covers basic and translational, clinical and population research approaches to arterial and vascular biology and disease, as well as their risk factors including: disturbances of lipid and lipoprotein metabolism, diabetes and hypertension, thrombosis, and inflammation. The Editors are interested in original or review papers dealing with the pathogenesis, environmental, genetic and epigenetic basis, diagnosis or treatment of atherosclerosis and related diseases as well as their risk factors.