Nicolás Grágeda , Carlos Busso , Eduardo Alvarado , Ricardo García , Rodrigo Mahu , Fernando Huenupan , Néstor Becerra Yoma
{"title":"真实静态和动态人机交互场景中的语音情感识别","authors":"Nicolás Grágeda , Carlos Busso , Eduardo Alvarado , Ricardo García , Rodrigo Mahu , Fernando Huenupan , Néstor Becerra Yoma","doi":"10.1016/j.csl.2024.101666","DOIUrl":null,"url":null,"abstract":"<div><p>The use of speech-based solutions is an appealing alternative to communicate in human-robot interaction (HRI). An important challenge in this area is processing distant speech which is often noisy, and affected by reverberation and time-varying acoustic channels. It is important to investigate effective speech solutions, especially in dynamic environments where the robots and the users move, changing the distance and orientation between a speaker and the microphone. This paper addresses this problem in the context of speech emotion recognition (SER), which is an important task to understand the intention of the message and the underlying mental state of the user. We propose a novel setup with a PR2 robot that moves as target speech and ambient noise are simultaneously recorded. Our study not only analyzes the detrimental effect of distance speech in this dynamic robot-user setting for speech emotion recognition but also provides solutions to attenuate its effect. We evaluate the use of two beamforming schemes to spatially filter the speech signal using either delay-and-sum (D&S) or minimum variance distortionless response (MVDR). We consider the original training speech recorded in controlled situations, and simulated conditions where the training utterances are processed to simulate the target acoustic environment. We consider the case where the robot is moving (dynamic case) and not moving (static case). For speech emotion recognition, we explore two state-of-the-art classifiers using hand-crafted features implemented with the ladder network strategy and learned features implemented with the wav2vec 2.0 feature representation. MVDR led to a signal-to-noise ratio higher than the basic D&S method. However, both approaches provided very similar average concordance correlation coefficient (CCC) improvements equal to 116 % with the HRI subsets using the ladder network trained with the original MSP-Podcast training utterances. For the wav2vec 2.0-based model, only D&S led to improvements. Surprisingly, the static and dynamic HRI testing subsets resulted in a similar average concordance correlation coefficient. Finally, simulating the acoustic environment in the training dataset provided the highest average concordance correlation coefficient scores with the HRI subsets that are just 29 % and 22 % lower than those obtained with the original training/testing utterances, with ladder network and wav2vec 2.0, respectively.</p></div>","PeriodicalId":50638,"journal":{"name":"Computer Speech and Language","volume":"89 ","pages":"Article 101666"},"PeriodicalIF":3.1000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885230824000494/pdfft?md5=10d8a0faec641adaf8be74271eaf5174&pid=1-s2.0-S0885230824000494-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Speech emotion recognition in real static and dynamic human-robot interaction scenarios\",\"authors\":\"Nicolás Grágeda , Carlos Busso , Eduardo Alvarado , Ricardo García , Rodrigo Mahu , Fernando Huenupan , Néstor Becerra Yoma\",\"doi\":\"10.1016/j.csl.2024.101666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The use of speech-based solutions is an appealing alternative to communicate in human-robot interaction (HRI). An important challenge in this area is processing distant speech which is often noisy, and affected by reverberation and time-varying acoustic channels. It is important to investigate effective speech solutions, especially in dynamic environments where the robots and the users move, changing the distance and orientation between a speaker and the microphone. This paper addresses this problem in the context of speech emotion recognition (SER), which is an important task to understand the intention of the message and the underlying mental state of the user. We propose a novel setup with a PR2 robot that moves as target speech and ambient noise are simultaneously recorded. Our study not only analyzes the detrimental effect of distance speech in this dynamic robot-user setting for speech emotion recognition but also provides solutions to attenuate its effect. We evaluate the use of two beamforming schemes to spatially filter the speech signal using either delay-and-sum (D&S) or minimum variance distortionless response (MVDR). We consider the original training speech recorded in controlled situations, and simulated conditions where the training utterances are processed to simulate the target acoustic environment. We consider the case where the robot is moving (dynamic case) and not moving (static case). For speech emotion recognition, we explore two state-of-the-art classifiers using hand-crafted features implemented with the ladder network strategy and learned features implemented with the wav2vec 2.0 feature representation. MVDR led to a signal-to-noise ratio higher than the basic D&S method. However, both approaches provided very similar average concordance correlation coefficient (CCC) improvements equal to 116 % with the HRI subsets using the ladder network trained with the original MSP-Podcast training utterances. For the wav2vec 2.0-based model, only D&S led to improvements. Surprisingly, the static and dynamic HRI testing subsets resulted in a similar average concordance correlation coefficient. Finally, simulating the acoustic environment in the training dataset provided the highest average concordance correlation coefficient scores with the HRI subsets that are just 29 % and 22 % lower than those obtained with the original training/testing utterances, with ladder network and wav2vec 2.0, respectively.</p></div>\",\"PeriodicalId\":50638,\"journal\":{\"name\":\"Computer Speech and Language\",\"volume\":\"89 \",\"pages\":\"Article 101666\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0885230824000494/pdfft?md5=10d8a0faec641adaf8be74271eaf5174&pid=1-s2.0-S0885230824000494-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Speech and Language\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885230824000494\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Speech and Language","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885230824000494","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Speech emotion recognition in real static and dynamic human-robot interaction scenarios
The use of speech-based solutions is an appealing alternative to communicate in human-robot interaction (HRI). An important challenge in this area is processing distant speech which is often noisy, and affected by reverberation and time-varying acoustic channels. It is important to investigate effective speech solutions, especially in dynamic environments where the robots and the users move, changing the distance and orientation between a speaker and the microphone. This paper addresses this problem in the context of speech emotion recognition (SER), which is an important task to understand the intention of the message and the underlying mental state of the user. We propose a novel setup with a PR2 robot that moves as target speech and ambient noise are simultaneously recorded. Our study not only analyzes the detrimental effect of distance speech in this dynamic robot-user setting for speech emotion recognition but also provides solutions to attenuate its effect. We evaluate the use of two beamforming schemes to spatially filter the speech signal using either delay-and-sum (D&S) or minimum variance distortionless response (MVDR). We consider the original training speech recorded in controlled situations, and simulated conditions where the training utterances are processed to simulate the target acoustic environment. We consider the case where the robot is moving (dynamic case) and not moving (static case). For speech emotion recognition, we explore two state-of-the-art classifiers using hand-crafted features implemented with the ladder network strategy and learned features implemented with the wav2vec 2.0 feature representation. MVDR led to a signal-to-noise ratio higher than the basic D&S method. However, both approaches provided very similar average concordance correlation coefficient (CCC) improvements equal to 116 % with the HRI subsets using the ladder network trained with the original MSP-Podcast training utterances. For the wav2vec 2.0-based model, only D&S led to improvements. Surprisingly, the static and dynamic HRI testing subsets resulted in a similar average concordance correlation coefficient. Finally, simulating the acoustic environment in the training dataset provided the highest average concordance correlation coefficient scores with the HRI subsets that are just 29 % and 22 % lower than those obtained with the original training/testing utterances, with ladder network and wav2vec 2.0, respectively.
期刊介绍:
Computer Speech & Language publishes reports of original research related to the recognition, understanding, production, coding and mining of speech and language.
The speech and language sciences have a long history, but it is only relatively recently that large-scale implementation of and experimentation with complex models of speech and language processing has become feasible. Such research is often carried out somewhat separately by practitioners of artificial intelligence, computer science, electronic engineering, information retrieval, linguistics, phonetics, or psychology.