Jinqi Shi , Chen Deng , Chunyue Zhang , Shu Quan , Liqiang Fan , Liming Zhao
{"title":"利用大肠杆菌的组合代谢工程从头生产结构明确的同质氨基寡糖","authors":"Jinqi Shi , Chen Deng , Chunyue Zhang , Shu Quan , Liqiang Fan , Liming Zhao","doi":"10.1016/j.synbio.2024.05.011","DOIUrl":null,"url":null,"abstract":"<div><p>Amino oligosaccharides (AOs) possess various biological activities and are valuable in the pharmaceutical, food industries, and agriculture. However, the industrial manufacturing of AOs has not been realized yet, despite reports on physical, chemical, and biological approaches. In this study, the <em>de novo</em> production of chitin oligosaccharides (CHOS), a type of structurally defined AOs, was achieved in <em>Escherichia coli</em> through combinatorial pathway engineering. The most suitable glycosyltransferase for CHOS production was found to be NodCL from <em>Mesorhizobium Loti</em>. Then, by knocking out the <em>nagB</em> gene to block the flow of N-acetyl-<span>d</span>-glucosamine (NAG) to the glycolytic pathway in <em>E. coli</em> and adjusting the copy number of NodCL-coding gene, the CHOS yield was increased by 6.56 times. Subsequently, by introducing of UDP-N-acetylglucosamine (UDP-GlcNAc) <em>salvage</em> pathway for and optimizing fermentation conditions, the yield of CHOS reached 207.1 and 468.6 mg/L in shake-flask cultivation and a 5-L fed-batch bioreactor, respectively. Meanwhile, the concentration of UDP-GlcNAc was 91.0 mg/L, the highest level reported in <em>E. coli</em> so far. This study demonstrated, for the first time, the production of CHOS with distinct structures in plasmid-free <em>E. coli</em>, laying the groundwork for the biosynthesis of CHOS and providing a starting point for further engineering and commercial production.</p></div>","PeriodicalId":22148,"journal":{"name":"Synthetic and Systems Biotechnology","volume":"9 4","pages":"Pages 713-722"},"PeriodicalIF":4.4000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405805X24000863/pdfft?md5=5c0ca8265585c2434e8e346f77cfebf0&pid=1-s2.0-S2405805X24000863-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Combinatorial metabolic engineering of Escherichia coli for de novo production of structurally defined and homogeneous Amino oligosaccharides\",\"authors\":\"Jinqi Shi , Chen Deng , Chunyue Zhang , Shu Quan , Liqiang Fan , Liming Zhao\",\"doi\":\"10.1016/j.synbio.2024.05.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Amino oligosaccharides (AOs) possess various biological activities and are valuable in the pharmaceutical, food industries, and agriculture. However, the industrial manufacturing of AOs has not been realized yet, despite reports on physical, chemical, and biological approaches. In this study, the <em>de novo</em> production of chitin oligosaccharides (CHOS), a type of structurally defined AOs, was achieved in <em>Escherichia coli</em> through combinatorial pathway engineering. The most suitable glycosyltransferase for CHOS production was found to be NodCL from <em>Mesorhizobium Loti</em>. Then, by knocking out the <em>nagB</em> gene to block the flow of N-acetyl-<span>d</span>-glucosamine (NAG) to the glycolytic pathway in <em>E. coli</em> and adjusting the copy number of NodCL-coding gene, the CHOS yield was increased by 6.56 times. Subsequently, by introducing of UDP-N-acetylglucosamine (UDP-GlcNAc) <em>salvage</em> pathway for and optimizing fermentation conditions, the yield of CHOS reached 207.1 and 468.6 mg/L in shake-flask cultivation and a 5-L fed-batch bioreactor, respectively. Meanwhile, the concentration of UDP-GlcNAc was 91.0 mg/L, the highest level reported in <em>E. coli</em> so far. This study demonstrated, for the first time, the production of CHOS with distinct structures in plasmid-free <em>E. coli</em>, laying the groundwork for the biosynthesis of CHOS and providing a starting point for further engineering and commercial production.</p></div>\",\"PeriodicalId\":22148,\"journal\":{\"name\":\"Synthetic and Systems Biotechnology\",\"volume\":\"9 4\",\"pages\":\"Pages 713-722\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405805X24000863/pdfft?md5=5c0ca8265585c2434e8e346f77cfebf0&pid=1-s2.0-S2405805X24000863-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthetic and Systems Biotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405805X24000863\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic and Systems Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405805X24000863","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Combinatorial metabolic engineering of Escherichia coli for de novo production of structurally defined and homogeneous Amino oligosaccharides
Amino oligosaccharides (AOs) possess various biological activities and are valuable in the pharmaceutical, food industries, and agriculture. However, the industrial manufacturing of AOs has not been realized yet, despite reports on physical, chemical, and biological approaches. In this study, the de novo production of chitin oligosaccharides (CHOS), a type of structurally defined AOs, was achieved in Escherichia coli through combinatorial pathway engineering. The most suitable glycosyltransferase for CHOS production was found to be NodCL from Mesorhizobium Loti. Then, by knocking out the nagB gene to block the flow of N-acetyl-d-glucosamine (NAG) to the glycolytic pathway in E. coli and adjusting the copy number of NodCL-coding gene, the CHOS yield was increased by 6.56 times. Subsequently, by introducing of UDP-N-acetylglucosamine (UDP-GlcNAc) salvage pathway for and optimizing fermentation conditions, the yield of CHOS reached 207.1 and 468.6 mg/L in shake-flask cultivation and a 5-L fed-batch bioreactor, respectively. Meanwhile, the concentration of UDP-GlcNAc was 91.0 mg/L, the highest level reported in E. coli so far. This study demonstrated, for the first time, the production of CHOS with distinct structures in plasmid-free E. coli, laying the groundwork for the biosynthesis of CHOS and providing a starting point for further engineering and commercial production.
期刊介绍:
Synthetic and Systems Biotechnology aims to promote the communication of original research in synthetic and systems biology, with strong emphasis on applications towards biotechnology. This journal is a quarterly peer-reviewed journal led by Editor-in-Chief Lixin Zhang. The journal publishes high-quality research; focusing on integrative approaches to enable the understanding and design of biological systems, and research to develop the application of systems and synthetic biology to natural systems. This journal will publish Articles, Short notes, Methods, Mini Reviews, Commentary and Conference reviews.