基于机器学习的与原发性胆汁性胆管炎发展为肝硬化相关的肠道微生物组特征描述

IF 2.6 4区 医学 Q3 IMMUNOLOGY Microbes and Infection Pub Date : 2024-11-01 DOI:10.1016/j.micinf.2024.105368
Qi Wang , Xiaomeng Tang , Wenying Qiao , Lina Sun , Han Shi , Dexi Chen , Bin Xu , Yanmin Liu , Juan Zhao , Chunyang Huang , Ronghua Jin
{"title":"基于机器学习的与原发性胆汁性胆管炎发展为肝硬化相关的肠道微生物组特征描述","authors":"Qi Wang ,&nbsp;Xiaomeng Tang ,&nbsp;Wenying Qiao ,&nbsp;Lina Sun ,&nbsp;Han Shi ,&nbsp;Dexi Chen ,&nbsp;Bin Xu ,&nbsp;Yanmin Liu ,&nbsp;Juan Zhao ,&nbsp;Chunyang Huang ,&nbsp;Ronghua Jin","doi":"10.1016/j.micinf.2024.105368","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div><span>Primary biliary cholangitis (PBC) is associated closely with the </span>gut microbiota<span><span>. This study aimed to explore the characteristics of the gut microbiota after the progress of PBC to </span>cirrhosis.</span></div></div><div><h3>Method</h3><div>This study focuses on utilizing the 16S rRNA<span> gene sequencing method to screen for differences in gut microbiota<span> in PBC patients who progress to cirrhosis. Then, we divided the data into training and verification sets and used seven different machine learning (ML) models to validate them respectively, calculating and comparing the accuracy, F1 score, precision, and recall, and screening the dominant intestinal flora affecting PBC cirrhosis.</span></span></div></div><div><h3>Result</h3><div><span>PBC cirrhosis patients showed decreased diversity and richness of gut microbiota. Additionally, there are alterations in the composition of gut microbiota in PBC cirrhosis patients. The abundance of </span><span><span>Faecalibacterium</span></span> and <em>Gemmiger</em> bacteria significantly decreases, while the abundance of <span><span>Veillonella</span></span> and <span><span>Streptococcus</span></span> significantly increases. Furthermore, machine learning methods identify <span><span>Streptococcus</span></span> and <em>Gemmiger</em> as the predominant gut microbiota in PBC patients with cirrhosis, serving as non-invasive biomarkers (AUC = 0.902).</div></div><div><h3>Conclusion</h3><div>Our study revealed that PBC cirrhosis patients gut microbiota composition and function have significantly changed. <em>Streptococcus</em> and <em>Gemmiger</em> may become a non-invasive biomarker for predicting the progression of PBC progress to cirrhosis.</div></div>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":"26 8","pages":"Article 105368"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-based characterization of the gut microbiome associated with the progression of primary biliary cholangitis to cirrhosis\",\"authors\":\"Qi Wang ,&nbsp;Xiaomeng Tang ,&nbsp;Wenying Qiao ,&nbsp;Lina Sun ,&nbsp;Han Shi ,&nbsp;Dexi Chen ,&nbsp;Bin Xu ,&nbsp;Yanmin Liu ,&nbsp;Juan Zhao ,&nbsp;Chunyang Huang ,&nbsp;Ronghua Jin\",\"doi\":\"10.1016/j.micinf.2024.105368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div><span>Primary biliary cholangitis (PBC) is associated closely with the </span>gut microbiota<span><span>. This study aimed to explore the characteristics of the gut microbiota after the progress of PBC to </span>cirrhosis.</span></div></div><div><h3>Method</h3><div>This study focuses on utilizing the 16S rRNA<span> gene sequencing method to screen for differences in gut microbiota<span> in PBC patients who progress to cirrhosis. Then, we divided the data into training and verification sets and used seven different machine learning (ML) models to validate them respectively, calculating and comparing the accuracy, F1 score, precision, and recall, and screening the dominant intestinal flora affecting PBC cirrhosis.</span></span></div></div><div><h3>Result</h3><div><span>PBC cirrhosis patients showed decreased diversity and richness of gut microbiota. Additionally, there are alterations in the composition of gut microbiota in PBC cirrhosis patients. The abundance of </span><span><span>Faecalibacterium</span></span> and <em>Gemmiger</em> bacteria significantly decreases, while the abundance of <span><span>Veillonella</span></span> and <span><span>Streptococcus</span></span> significantly increases. Furthermore, machine learning methods identify <span><span>Streptococcus</span></span> and <em>Gemmiger</em> as the predominant gut microbiota in PBC patients with cirrhosis, serving as non-invasive biomarkers (AUC = 0.902).</div></div><div><h3>Conclusion</h3><div>Our study revealed that PBC cirrhosis patients gut microbiota composition and function have significantly changed. <em>Streptococcus</em> and <em>Gemmiger</em> may become a non-invasive biomarker for predicting the progression of PBC progress to cirrhosis.</div></div>\",\"PeriodicalId\":18497,\"journal\":{\"name\":\"Microbes and Infection\",\"volume\":\"26 8\",\"pages\":\"Article 105368\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbes and Infection\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1286457924001047\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbes and Infection","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1286457924001047","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:原发性胆道胆管炎(PBC)与肠道菌群密切相关。本研究旨在探讨PBC发展为肝硬化后肠道菌群的特点。方法利用16S rRNA基因测序方法筛选进展为肝硬化的PBC患者肠道菌群的差异。然后,我们将数据分成训练集和验证集,分别使用7种不同的机器学习(ML)模型进行验证,计算并比较准确率、F1评分、精度和召回率,筛选影响PBC肝硬化的优势肠道菌群。结果bc肝硬化患者肠道菌群多样性和丰富度下降。此外,PBC肝硬化患者的肠道菌群组成也发生了变化。粪杆菌和Gemmiger菌的丰度显著降低,细络菌和链球菌的丰度显著增加。此外,机器学习方法确定链球菌和Gemmiger是肝硬化PBC患者的主要肠道微生物群,作为非侵入性生物标志物(AUC = 0.902)。结论PBC肝硬化患者肠道菌群组成和功能发生了显著变化。链球菌和Gemmiger可能成为预测PBC进展到肝硬化的非侵入性生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning-based characterization of the gut microbiome associated with the progression of primary biliary cholangitis to cirrhosis

Background

Primary biliary cholangitis (PBC) is associated closely with the gut microbiota. This study aimed to explore the characteristics of the gut microbiota after the progress of PBC to cirrhosis.

Method

This study focuses on utilizing the 16S rRNA gene sequencing method to screen for differences in gut microbiota in PBC patients who progress to cirrhosis. Then, we divided the data into training and verification sets and used seven different machine learning (ML) models to validate them respectively, calculating and comparing the accuracy, F1 score, precision, and recall, and screening the dominant intestinal flora affecting PBC cirrhosis.

Result

PBC cirrhosis patients showed decreased diversity and richness of gut microbiota. Additionally, there are alterations in the composition of gut microbiota in PBC cirrhosis patients. The abundance of Faecalibacterium and Gemmiger bacteria significantly decreases, while the abundance of Veillonella and Streptococcus significantly increases. Furthermore, machine learning methods identify Streptococcus and Gemmiger as the predominant gut microbiota in PBC patients with cirrhosis, serving as non-invasive biomarkers (AUC = 0.902).

Conclusion

Our study revealed that PBC cirrhosis patients gut microbiota composition and function have significantly changed. Streptococcus and Gemmiger may become a non-invasive biomarker for predicting the progression of PBC progress to cirrhosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbes and Infection
Microbes and Infection 医学-病毒学
CiteScore
12.60
自引率
1.70%
发文量
90
审稿时长
40 days
期刊介绍: Microbes and Infection publishes 10 peer-reviewed issues per year in all fields of infection and immunity, covering the different levels of host-microbe interactions, and in particular: the molecular biology and cell biology of the crosstalk between hosts (human and model organisms) and microbes (viruses, bacteria, parasites and fungi), including molecular virulence and evasion mechanisms. the immune response to infection, including pathogenesis and host susceptibility. emerging human infectious diseases. systems immunology. molecular epidemiology/genetics of host pathogen interactions. microbiota and host "interactions". vaccine development, including novel strategies and adjuvants. Clinical studies, accounts of clinical trials and biomarker studies in infectious diseases are within the scope of the journal. Microbes and Infection publishes articles on human pathogens or pathogens of model systems. However, articles on other microbes can be published if they contribute to our understanding of basic mechanisms of host-pathogen interactions. Purely descriptive and preliminary studies are discouraged.
期刊最新文献
Pseudomonas aeruginosa-derived DnaJ induces TLR2 expression through TLR10-mediated activation of the PI3K-SGK1 pathway in macrophages. Immunostimulatory effects of Hsp70 fragments-modified DCs: A computational and experimental study in HIV vaccine design. Endogenous retroviruses in neurodevelopmental, psychotic and cognitive disorders. The efficacy of the bacteriocinogenic Enterococcus faecalis 14 in the control of induced necrotic enteritis in broilers. The transactivation of human endogenous retroviruses is associated with HIV-1 reservoir, lymphocyte activation and low CD4 count in virologically suppressed PLWH.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1