{"title":"使用自适应熵秃鹰搜索优化和基于密度的自适应软聚类的 WSN 最佳节能路由选择","authors":"Maravarman Manoharan , Babu Subramani , Pitchai Ramu","doi":"10.1016/j.suscom.2024.101003","DOIUrl":null,"url":null,"abstract":"<div><p>Wireless Sensor Network (WSN) uses soft computing techniques to reduce task time consuming and unsolvable energy consumption problems. This study used soft-computing-based methods to demonstrate the best data transfer in WSN. Nodes in a network are initially clustered using density-based Adaptive Soft (DAS) clustering. Afterward, the cluster head (CH) is selected using a modified beetle swarm optimization technique. Distance, energy, trust, and throughput are all considered when deciding on the ideal CH. The node with the highest entropy for data transmission is then determined by calculating each node’s entropy weight values based on these factors. The CH carries out the data aggregation after the data collection from the sensor nodes. Finally, entropy value based bald eagle search (EBES) optimization with an adaptive entropy value is used to perform the finest energy efficient routing, a strategy for the best possible data transmission. The proposed approach attains improved performance than the compared existing approaches in terms of delay (6.5 ms), throughput (320.1 kbps), energy (1.92<span><math><mi>j</mi></math></span>), and packet delivery ratio (218.7%), the work provided is contrasted to the various current methods. The performance of the proposed approach is compared to existing approaches to prove its effectiveness, and it has been proven to perform better than the existing routing approaches.</p></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"43 ","pages":"Article 101003"},"PeriodicalIF":3.8000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An optimal energy efficient routing in WSN using adaptive entropy bald eagle search optimization and density based adaptive soft clustering\",\"authors\":\"Maravarman Manoharan , Babu Subramani , Pitchai Ramu\",\"doi\":\"10.1016/j.suscom.2024.101003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Wireless Sensor Network (WSN) uses soft computing techniques to reduce task time consuming and unsolvable energy consumption problems. This study used soft-computing-based methods to demonstrate the best data transfer in WSN. Nodes in a network are initially clustered using density-based Adaptive Soft (DAS) clustering. Afterward, the cluster head (CH) is selected using a modified beetle swarm optimization technique. Distance, energy, trust, and throughput are all considered when deciding on the ideal CH. The node with the highest entropy for data transmission is then determined by calculating each node’s entropy weight values based on these factors. The CH carries out the data aggregation after the data collection from the sensor nodes. Finally, entropy value based bald eagle search (EBES) optimization with an adaptive entropy value is used to perform the finest energy efficient routing, a strategy for the best possible data transmission. The proposed approach attains improved performance than the compared existing approaches in terms of delay (6.5 ms), throughput (320.1 kbps), energy (1.92<span><math><mi>j</mi></math></span>), and packet delivery ratio (218.7%), the work provided is contrasted to the various current methods. The performance of the proposed approach is compared to existing approaches to prove its effectiveness, and it has been proven to perform better than the existing routing approaches.</p></div>\",\"PeriodicalId\":48686,\"journal\":{\"name\":\"Sustainable Computing-Informatics & Systems\",\"volume\":\"43 \",\"pages\":\"Article 101003\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Computing-Informatics & Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210537924000489\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537924000489","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
An optimal energy efficient routing in WSN using adaptive entropy bald eagle search optimization and density based adaptive soft clustering
Wireless Sensor Network (WSN) uses soft computing techniques to reduce task time consuming and unsolvable energy consumption problems. This study used soft-computing-based methods to demonstrate the best data transfer in WSN. Nodes in a network are initially clustered using density-based Adaptive Soft (DAS) clustering. Afterward, the cluster head (CH) is selected using a modified beetle swarm optimization technique. Distance, energy, trust, and throughput are all considered when deciding on the ideal CH. The node with the highest entropy for data transmission is then determined by calculating each node’s entropy weight values based on these factors. The CH carries out the data aggregation after the data collection from the sensor nodes. Finally, entropy value based bald eagle search (EBES) optimization with an adaptive entropy value is used to perform the finest energy efficient routing, a strategy for the best possible data transmission. The proposed approach attains improved performance than the compared existing approaches in terms of delay (6.5 ms), throughput (320.1 kbps), energy (1.92), and packet delivery ratio (218.7%), the work provided is contrasted to the various current methods. The performance of the proposed approach is compared to existing approaches to prove its effectiveness, and it has been proven to perform better than the existing routing approaches.
期刊介绍:
Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.