利用图形自动编码器和基于注意力的图形卷积网络改进故障检测和诊断

IF 3 Q2 ENGINEERING, CHEMICAL Digital Chemical Engineering Pub Date : 2024-06-01 DOI:10.1016/j.dche.2024.100158
Parth Brahmbhatt , Rahul Patel , Abhilasha Maheshwari , Ravindra D. Gudi
{"title":"利用图形自动编码器和基于注意力的图形卷积网络改进故障检测和诊断","authors":"Parth Brahmbhatt ,&nbsp;Rahul Patel ,&nbsp;Abhilasha Maheshwari ,&nbsp;Ravindra D. Gudi","doi":"10.1016/j.dche.2024.100158","DOIUrl":null,"url":null,"abstract":"<div><p>A powerful fault detection and diagnosis (FDD) system plays a pivotal role in achieving operational excellence by maximizing system performance, optimizing maintenance strategies, and ensuring the longevity and resilience of process plants. In the context of FDD for multivariate sensor data, this study presents an improved FDD approach using graph-based neural networks. This graph neural network uses an adjacency matrix developed by extracting the expert domain knowledge and topological information of the multi-sensor system. This additional graph representation of the system is incorporated along with multivariate sensor data to capture the spatial and temporal information in neural networks efficiently. In this regard, we propose and evaluate: 1) A Graph Auto Encoder (GAE) based fault detection strategy and 2) An Attention-based Spatial Temporal Graph Convolution Network (ASTGCN) based fault diagnosis methodology. By leveraging the additional knowledge in the form of graphs, the GAE captures the complex relationships and dependencies among sensors, enabling effective anomaly detection, which identifies abnormal patterns and deviations from normal behavior, thus indicating potential faults in the system. The ASTGCN incorporates attention mechanisms to selectively focus on relevant sensor nodes and capture their spatial and temporal dependencies for fault diagnosis. The effectiveness of the proposed FDD approach is demonstrated using the benchmark Tennessee Eastman Process (TEP) problem. The results show that the proposed approaches outperform traditional methods and highlight the importance of leveraging graph-based knowledge for FDD in complex systems.</p></div>","PeriodicalId":72815,"journal":{"name":"Digital Chemical Engineering","volume":"11 ","pages":"Article 100158"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772508124000206/pdfft?md5=12ab785c88140b9415f4004d52e28b12&pid=1-s2.0-S2772508124000206-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Improved fault detection and diagnosis using graph auto encoder and attention-based graph convolution networks\",\"authors\":\"Parth Brahmbhatt ,&nbsp;Rahul Patel ,&nbsp;Abhilasha Maheshwari ,&nbsp;Ravindra D. Gudi\",\"doi\":\"10.1016/j.dche.2024.100158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A powerful fault detection and diagnosis (FDD) system plays a pivotal role in achieving operational excellence by maximizing system performance, optimizing maintenance strategies, and ensuring the longevity and resilience of process plants. In the context of FDD for multivariate sensor data, this study presents an improved FDD approach using graph-based neural networks. This graph neural network uses an adjacency matrix developed by extracting the expert domain knowledge and topological information of the multi-sensor system. This additional graph representation of the system is incorporated along with multivariate sensor data to capture the spatial and temporal information in neural networks efficiently. In this regard, we propose and evaluate: 1) A Graph Auto Encoder (GAE) based fault detection strategy and 2) An Attention-based Spatial Temporal Graph Convolution Network (ASTGCN) based fault diagnosis methodology. By leveraging the additional knowledge in the form of graphs, the GAE captures the complex relationships and dependencies among sensors, enabling effective anomaly detection, which identifies abnormal patterns and deviations from normal behavior, thus indicating potential faults in the system. The ASTGCN incorporates attention mechanisms to selectively focus on relevant sensor nodes and capture their spatial and temporal dependencies for fault diagnosis. The effectiveness of the proposed FDD approach is demonstrated using the benchmark Tennessee Eastman Process (TEP) problem. The results show that the proposed approaches outperform traditional methods and highlight the importance of leveraging graph-based knowledge for FDD in complex systems.</p></div>\",\"PeriodicalId\":72815,\"journal\":{\"name\":\"Digital Chemical Engineering\",\"volume\":\"11 \",\"pages\":\"Article 100158\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772508124000206/pdfft?md5=12ab785c88140b9415f4004d52e28b12&pid=1-s2.0-S2772508124000206-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772508124000206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772508124000206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

一个功能强大的故障检测与诊断(FDD)系统可以最大限度地提高系统性能,优化维护策略,并确保工艺设备的使用寿命和恢复能力,在实现卓越运营方面发挥着举足轻重的作用。针对多变量传感器数据的 FDD,本研究提出了一种基于图神经网络的改进型 FDD 方法。这种图神经网络使用通过提取多传感器系统的专家领域知识和拓扑信息而开发的邻接矩阵。该系统的附加图表示与多变量传感器数据结合在一起,从而在神经网络中有效捕捉空间和时间信息。为此,我们提出并评估了1) 基于图形自动编码器(GAE)的故障检测策略;2) 基于注意力的时空图形卷积网络(ASTGCN)的故障诊断方法。通过利用图形形式的附加知识,GAE 可捕捉传感器之间的复杂关系和依赖性,从而实现有效的异常检测,识别异常模式和偏离正常行为的情况,从而指出系统中的潜在故障。ASTGCN 结合了注意力机制,可选择性地关注相关的传感器节点,并捕捉它们的空间和时间依赖关系,从而进行故障诊断。利用基准 Tennessee Eastman Process (TEP) 问题证明了所提出的 FDD 方法的有效性。结果表明,所提出的方法优于传统方法,并强调了在复杂系统中利用基于图的知识进行故障诊断的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved fault detection and diagnosis using graph auto encoder and attention-based graph convolution networks

A powerful fault detection and diagnosis (FDD) system plays a pivotal role in achieving operational excellence by maximizing system performance, optimizing maintenance strategies, and ensuring the longevity and resilience of process plants. In the context of FDD for multivariate sensor data, this study presents an improved FDD approach using graph-based neural networks. This graph neural network uses an adjacency matrix developed by extracting the expert domain knowledge and topological information of the multi-sensor system. This additional graph representation of the system is incorporated along with multivariate sensor data to capture the spatial and temporal information in neural networks efficiently. In this regard, we propose and evaluate: 1) A Graph Auto Encoder (GAE) based fault detection strategy and 2) An Attention-based Spatial Temporal Graph Convolution Network (ASTGCN) based fault diagnosis methodology. By leveraging the additional knowledge in the form of graphs, the GAE captures the complex relationships and dependencies among sensors, enabling effective anomaly detection, which identifies abnormal patterns and deviations from normal behavior, thus indicating potential faults in the system. The ASTGCN incorporates attention mechanisms to selectively focus on relevant sensor nodes and capture their spatial and temporal dependencies for fault diagnosis. The effectiveness of the proposed FDD approach is demonstrated using the benchmark Tennessee Eastman Process (TEP) problem. The results show that the proposed approaches outperform traditional methods and highlight the importance of leveraging graph-based knowledge for FDD in complex systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
期刊最新文献
The trust region filter strategy: Survey of a rigorous approach for optimization with surrogate models Multi-agent distributed control of integrated process networks using an adaptive community detection approach Industrial data-driven machine learning soft sensing for optimal operation of etching tools Process integration technique for targeting carbon credit price subsidy Robust simulation and technical evaluation of large-scale gas oil hydrocracking process via extended water-energy-product (E-WEP) analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1