{"title":"灌溉渠高效稳健控制的综合数学模型","authors":"Rajani Pandey , G R Jayanth , M.S Mohan Kumar","doi":"10.1016/j.envsoft.2024.106083","DOIUrl":null,"url":null,"abstract":"<div><p>Linear control-oriented models are important to represent canal dynamics for designing controllers. This study focuses on hydraulic control structure (gate) modelling to address the complex interdependent behavior inherent in irrigation canals. A comprehensive mathematical model that incorporates the water level with gate-opening to model discharge is introduced for single and multiple canal pool scenarios. The proposed model captures the hydraulic coupling within and among canal pools, a key finding. The model is evaluated extensively under uniform and non-uniform flows across three distinct canals, highlighting the model's applicability to various systems. The uncertainty inherent within the nominal model is also assessed for varying operating conditions and hydraulic parameters. The proposed model is compared with the existing and the Saint-Venant (SV) model, showing improved accuracy in water-level predictions. This advancement in hydraulic modelling contributes to adaptable canal models essential in developing robust controllers to enhance water management in irrigation canals.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive mathematical model for efficient and robust control of irrigation canals\",\"authors\":\"Rajani Pandey , G R Jayanth , M.S Mohan Kumar\",\"doi\":\"10.1016/j.envsoft.2024.106083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Linear control-oriented models are important to represent canal dynamics for designing controllers. This study focuses on hydraulic control structure (gate) modelling to address the complex interdependent behavior inherent in irrigation canals. A comprehensive mathematical model that incorporates the water level with gate-opening to model discharge is introduced for single and multiple canal pool scenarios. The proposed model captures the hydraulic coupling within and among canal pools, a key finding. The model is evaluated extensively under uniform and non-uniform flows across three distinct canals, highlighting the model's applicability to various systems. The uncertainty inherent within the nominal model is also assessed for varying operating conditions and hydraulic parameters. The proposed model is compared with the existing and the Saint-Venant (SV) model, showing improved accuracy in water-level predictions. This advancement in hydraulic modelling contributes to adaptable canal models essential in developing robust controllers to enhance water management in irrigation canals.</p></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815224001440\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224001440","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Comprehensive mathematical model for efficient and robust control of irrigation canals
Linear control-oriented models are important to represent canal dynamics for designing controllers. This study focuses on hydraulic control structure (gate) modelling to address the complex interdependent behavior inherent in irrigation canals. A comprehensive mathematical model that incorporates the water level with gate-opening to model discharge is introduced for single and multiple canal pool scenarios. The proposed model captures the hydraulic coupling within and among canal pools, a key finding. The model is evaluated extensively under uniform and non-uniform flows across three distinct canals, highlighting the model's applicability to various systems. The uncertainty inherent within the nominal model is also assessed for varying operating conditions and hydraulic parameters. The proposed model is compared with the existing and the Saint-Venant (SV) model, showing improved accuracy in water-level predictions. This advancement in hydraulic modelling contributes to adaptable canal models essential in developing robust controllers to enhance water management in irrigation canals.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.