Protopapas Eleftherios , Vafeas Panayiotis , Hadjinicolaou Maria
{"title":"研究红血球磁感应强度的数学模型","authors":"Protopapas Eleftherios , Vafeas Panayiotis , Hadjinicolaou Maria","doi":"10.1016/j.apnum.2024.05.014","DOIUrl":null,"url":null,"abstract":"<div><div><span><span>The susceptibility of the human Red Blood Cells (RBCs) under the action of magnetic fields, either serves as a biomarker in medical tests, e.g.. Magnetic Resonance Imaging, Nuclear Magnetic Resonance, </span>Magnetoencephalography, or it is used in diagnostic and therapeutical processes, e.g.. magnetophoresis for cell sorting. In the present manuscript we provide analytical expressions for the magnetic potential and the magnetic field </span>strength vector, when a magnetic field is applied to a RBC, modeled as a two-layered inverted spheroid. We introduce this way in the model the biconcave shape of the RBC and its structure (membrane and cytocol) in a more realistic representation, as until now, the RBC's shape was considered either as a sphere or a spheroid. The solution inside the RBC is obtained in R-separable form in terms of Legendre functions of the first and of the second kind and cyclic trigonometric functions, by applying appropriate boundary conditions on each layer. Our results reveal a non-uniform magnetic field inside the RBC. Parametric study of the solution, for various values of the physical properties of the RBC, is also provided, demonstrating the diamagnetic or the paramagnetic property of the RBC, which is strongly related to the health condition of the blood. The obtained solution may also serve for the justification of experimental results.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"208 ","pages":"Pages 356-365"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mathematical model for studying the Red Blood Cell magnetic susceptibility\",\"authors\":\"Protopapas Eleftherios , Vafeas Panayiotis , Hadjinicolaou Maria\",\"doi\":\"10.1016/j.apnum.2024.05.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><span><span>The susceptibility of the human Red Blood Cells (RBCs) under the action of magnetic fields, either serves as a biomarker in medical tests, e.g.. Magnetic Resonance Imaging, Nuclear Magnetic Resonance, </span>Magnetoencephalography, or it is used in diagnostic and therapeutical processes, e.g.. magnetophoresis for cell sorting. In the present manuscript we provide analytical expressions for the magnetic potential and the magnetic field </span>strength vector, when a magnetic field is applied to a RBC, modeled as a two-layered inverted spheroid. We introduce this way in the model the biconcave shape of the RBC and its structure (membrane and cytocol) in a more realistic representation, as until now, the RBC's shape was considered either as a sphere or a spheroid. The solution inside the RBC is obtained in R-separable form in terms of Legendre functions of the first and of the second kind and cyclic trigonometric functions, by applying appropriate boundary conditions on each layer. Our results reveal a non-uniform magnetic field inside the RBC. Parametric study of the solution, for various values of the physical properties of the RBC, is also provided, demonstrating the diamagnetic or the paramagnetic property of the RBC, which is strongly related to the health condition of the blood. The obtained solution may also serve for the justification of experimental results.</div></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"208 \",\"pages\":\"Pages 356-365\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016892742400120X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016892742400120X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A mathematical model for studying the Red Blood Cell magnetic susceptibility
The susceptibility of the human Red Blood Cells (RBCs) under the action of magnetic fields, either serves as a biomarker in medical tests, e.g.. Magnetic Resonance Imaging, Nuclear Magnetic Resonance, Magnetoencephalography, or it is used in diagnostic and therapeutical processes, e.g.. magnetophoresis for cell sorting. In the present manuscript we provide analytical expressions for the magnetic potential and the magnetic field strength vector, when a magnetic field is applied to a RBC, modeled as a two-layered inverted spheroid. We introduce this way in the model the biconcave shape of the RBC and its structure (membrane and cytocol) in a more realistic representation, as until now, the RBC's shape was considered either as a sphere or a spheroid. The solution inside the RBC is obtained in R-separable form in terms of Legendre functions of the first and of the second kind and cyclic trigonometric functions, by applying appropriate boundary conditions on each layer. Our results reveal a non-uniform magnetic field inside the RBC. Parametric study of the solution, for various values of the physical properties of the RBC, is also provided, demonstrating the diamagnetic or the paramagnetic property of the RBC, which is strongly related to the health condition of the blood. The obtained solution may also serve for the justification of experimental results.
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.