脂肪细胞和新陈代谢:对多发性骨髓瘤的贡献

IF 3.4 2区 医学 Q2 Medicine Journal of Bone Oncology Pub Date : 2024-06-01 DOI:10.1016/j.jbo.2024.100609
Heather Fairfield , Michelle Karam , Allyson Schimelman , Ya-Wei Qiang , Michaela R. Reagan
{"title":"脂肪细胞和新陈代谢:对多发性骨髓瘤的贡献","authors":"Heather Fairfield ,&nbsp;Michelle Karam ,&nbsp;Allyson Schimelman ,&nbsp;Ya-Wei Qiang ,&nbsp;Michaela R. Reagan","doi":"10.1016/j.jbo.2024.100609","DOIUrl":null,"url":null,"abstract":"<div><p>Obesity contributes to many cancers, including breast cancer and multiple myeloma, two cancers that often colonize the bone marrow (BM). Obesity often causes metabolic disease, but at the cellular level, there is uncertainty regarding how these shifts affect cellular phenotypes. Evidence is building that different types of fuel affect tumor cell metabolism, mitochondrial function, and signaling pathways differently, but tumor cells are also flexible and adapt to less-than ideal metabolic conditions, suggesting that single-pronged attacks on tumor metabolism may not be efficacious enough to be effective clinically. In this review, we describe the newest research at the pre-clinical level on how tumor metabolic pathways and energy sources affect cancer cells, with a special focus on multiple myeloma (MM). We also describe the known forward-feedback loops between bone marrow adipocytes (BMAds) and local tumor cells that support tumor growth. We describe how metabolic targets and transcription factors related to fatty acid (FA) oxidation, FA biosynthesis, glycolysis, oxidative phosphorylation (OXPHOS), and other pathways hold great promise as new vulnerabilities in myeloma cells. Specifically, we describe the importance of the acetyl-CoA synthetase (ACSS) and the acyl-CoA synthetase long chain (ACSL) families, which are both involved in FA metabolism. We also describe new data on the importance of lactate metabolism and lactate transporters in supporting the growth of tumor cells in a hypoxic BM microenvironment. We highlight new data showing the dependency of myeloma cells on the mitochondrial pyruvate carrier (MPC), which transports pyruvate to the mitochondria to fuel the tricarboxylic acid (TCA) cycle and electron transport chain (ETC), boosting OXPHOS. Inhibiting the MPC affects myeloma cell mitochondrial metabolism and growth, and synergizes with proteosome inhibitors in killing myeloma cells. We also describe how metabolic signaling pathways intersect established survival and proliferation pathways; for example, the fatty acid binding proteins (FABPs) affect MYC signaling and support growth, survival, and metabolism of myeloma cells. Our goal is to review the current the field so that novel, metabolic-focused therapeutic interventions and treatments can be imagined, developed and tested to decrease the burden of MM and related cancers.</p></div>","PeriodicalId":48806,"journal":{"name":"Journal of Bone Oncology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212137424000897/pdfft?md5=58e857e7b31825db0b4bbaa32df22153&pid=1-s2.0-S2212137424000897-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Adipocytes and metabolism: Contributions to multiple myeloma\",\"authors\":\"Heather Fairfield ,&nbsp;Michelle Karam ,&nbsp;Allyson Schimelman ,&nbsp;Ya-Wei Qiang ,&nbsp;Michaela R. Reagan\",\"doi\":\"10.1016/j.jbo.2024.100609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Obesity contributes to many cancers, including breast cancer and multiple myeloma, two cancers that often colonize the bone marrow (BM). Obesity often causes metabolic disease, but at the cellular level, there is uncertainty regarding how these shifts affect cellular phenotypes. Evidence is building that different types of fuel affect tumor cell metabolism, mitochondrial function, and signaling pathways differently, but tumor cells are also flexible and adapt to less-than ideal metabolic conditions, suggesting that single-pronged attacks on tumor metabolism may not be efficacious enough to be effective clinically. In this review, we describe the newest research at the pre-clinical level on how tumor metabolic pathways and energy sources affect cancer cells, with a special focus on multiple myeloma (MM). We also describe the known forward-feedback loops between bone marrow adipocytes (BMAds) and local tumor cells that support tumor growth. We describe how metabolic targets and transcription factors related to fatty acid (FA) oxidation, FA biosynthesis, glycolysis, oxidative phosphorylation (OXPHOS), and other pathways hold great promise as new vulnerabilities in myeloma cells. Specifically, we describe the importance of the acetyl-CoA synthetase (ACSS) and the acyl-CoA synthetase long chain (ACSL) families, which are both involved in FA metabolism. We also describe new data on the importance of lactate metabolism and lactate transporters in supporting the growth of tumor cells in a hypoxic BM microenvironment. We highlight new data showing the dependency of myeloma cells on the mitochondrial pyruvate carrier (MPC), which transports pyruvate to the mitochondria to fuel the tricarboxylic acid (TCA) cycle and electron transport chain (ETC), boosting OXPHOS. Inhibiting the MPC affects myeloma cell mitochondrial metabolism and growth, and synergizes with proteosome inhibitors in killing myeloma cells. We also describe how metabolic signaling pathways intersect established survival and proliferation pathways; for example, the fatty acid binding proteins (FABPs) affect MYC signaling and support growth, survival, and metabolism of myeloma cells. Our goal is to review the current the field so that novel, metabolic-focused therapeutic interventions and treatments can be imagined, developed and tested to decrease the burden of MM and related cancers.</p></div>\",\"PeriodicalId\":48806,\"journal\":{\"name\":\"Journal of Bone Oncology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2212137424000897/pdfft?md5=58e857e7b31825db0b4bbaa32df22153&pid=1-s2.0-S2212137424000897-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bone Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212137424000897\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212137424000897","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

肥胖会导致多种癌症,包括乳腺癌和多发性骨髓瘤,这两种癌症通常会在骨髓中定植。肥胖通常会导致新陈代谢疾病,但在细胞层面,这些变化如何影响细胞表型尚不确定。越来越多的证据表明,不同类型的燃料会对肿瘤细胞的新陈代谢、线粒体功能和信号通路产生不同的影响,但肿瘤细胞也很灵活,能适应不理想的新陈代谢条件,这表明对肿瘤新陈代谢进行单管齐下的攻击可能不够有效,在临床上难以奏效。在这篇综述中,我们将介绍临床前水平上关于肿瘤代谢途径和能量来源如何影响癌细胞的最新研究,并特别关注多发性骨髓瘤(MM)。我们还描述了已知的骨髓脂肪细胞(BMAds)与支持肿瘤生长的局部肿瘤细胞之间的前馈回路。我们描述了与脂肪酸(FA)氧化、FA 生物合成、糖酵解、氧化磷酸化(OXPHOS)和其他途径相关的代谢靶点和转录因子如何有望成为骨髓瘤细胞的新漏洞。具体而言,我们描述了乙酰-CoA 合成酶(ACSS)和酰基-CoA 合成酶长链(ACSL)家族的重要性,它们都参与了 FA 代谢。我们还介绍了有关乳酸代谢和乳酸转运体在支持肿瘤细胞在缺氧的 BM 微环境中生长的重要性的新数据。我们重点介绍了显示骨髓瘤细胞依赖线粒体丙酮酸载体(MPC)的新数据,MPC将丙酮酸运送到线粒体,为三羧酸(TCA)循环和电子传递链(ETC)提供燃料,促进氧合有氧呼吸。抑制 MPC 会影响骨髓瘤细胞的线粒体代谢和生长,并与蛋白酶体抑制剂协同杀死骨髓瘤细胞。我们还描述了新陈代谢信号通路如何与既有的生存和增殖通路交叉;例如,脂肪酸结合蛋白(FABPs)会影响 MYC 信号通路,并支持骨髓瘤细胞的生长、生存和新陈代谢。我们的目标是回顾当前的研究领域,以便想象、开发和测试以代谢为重点的新型治疗干预和疗法,减轻骨髓瘤和相关癌症的负担。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adipocytes and metabolism: Contributions to multiple myeloma

Obesity contributes to many cancers, including breast cancer and multiple myeloma, two cancers that often colonize the bone marrow (BM). Obesity often causes metabolic disease, but at the cellular level, there is uncertainty regarding how these shifts affect cellular phenotypes. Evidence is building that different types of fuel affect tumor cell metabolism, mitochondrial function, and signaling pathways differently, but tumor cells are also flexible and adapt to less-than ideal metabolic conditions, suggesting that single-pronged attacks on tumor metabolism may not be efficacious enough to be effective clinically. In this review, we describe the newest research at the pre-clinical level on how tumor metabolic pathways and energy sources affect cancer cells, with a special focus on multiple myeloma (MM). We also describe the known forward-feedback loops between bone marrow adipocytes (BMAds) and local tumor cells that support tumor growth. We describe how metabolic targets and transcription factors related to fatty acid (FA) oxidation, FA biosynthesis, glycolysis, oxidative phosphorylation (OXPHOS), and other pathways hold great promise as new vulnerabilities in myeloma cells. Specifically, we describe the importance of the acetyl-CoA synthetase (ACSS) and the acyl-CoA synthetase long chain (ACSL) families, which are both involved in FA metabolism. We also describe new data on the importance of lactate metabolism and lactate transporters in supporting the growth of tumor cells in a hypoxic BM microenvironment. We highlight new data showing the dependency of myeloma cells on the mitochondrial pyruvate carrier (MPC), which transports pyruvate to the mitochondria to fuel the tricarboxylic acid (TCA) cycle and electron transport chain (ETC), boosting OXPHOS. Inhibiting the MPC affects myeloma cell mitochondrial metabolism and growth, and synergizes with proteosome inhibitors in killing myeloma cells. We also describe how metabolic signaling pathways intersect established survival and proliferation pathways; for example, the fatty acid binding proteins (FABPs) affect MYC signaling and support growth, survival, and metabolism of myeloma cells. Our goal is to review the current the field so that novel, metabolic-focused therapeutic interventions and treatments can be imagined, developed and tested to decrease the burden of MM and related cancers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
2.90%
发文量
50
审稿时长
34 days
期刊介绍: The Journal of Bone Oncology is a peer-reviewed international journal aimed at presenting basic, translational and clinical high-quality research related to bone and cancer. As the first journal dedicated to cancer induced bone diseases, JBO welcomes original research articles, review articles, editorials and opinion pieces. Case reports will only be considered in exceptional circumstances and only when accompanied by a comprehensive review of the subject. The areas covered by the journal include: Bone metastases (pathophysiology, epidemiology, diagnostics, clinical features, prevention, treatment) Preclinical models of metastasis Bone microenvironment in cancer (stem cell, bone cell and cancer interactions) Bone targeted therapy (pharmacology, therapeutic targets, drug development, clinical trials, side-effects, outcome research, health economics) Cancer treatment induced bone loss (epidemiology, pathophysiology, prevention and management) Bone imaging (clinical and animal, skeletal interventional radiology) Bone biomarkers (clinical and translational applications) Radiotherapy and radio-isotopes Skeletal complications Bone pain (mechanisms and management) Orthopaedic cancer surgery Primary bone tumours Clinical guidelines Multidisciplinary care Keywords: bisphosphonate, bone, breast cancer, cancer, CTIBL, denosumab, metastasis, myeloma, osteoblast, osteoclast, osteooncology, osteo-oncology, prostate cancer, skeleton, tumour.
期刊最新文献
Clinical decision-making in bone cancer care management and forecast of ICU needs based on computed tomography Progression of vertebral fractures in metastatic melanoma and non-small cell lung cancer patients given immune checkpoint inhibitors Is surgery without curettage effective for periacetabular Metastasis? Insights from a survival study of 93 patients Bone density measurement in patients with spinal metastatic tumors using chest quantitative CT deep learning model Deep bone oncology Diagnostics: Computed tomography based Machine learning for detection of bone tumors from breast cancer metastasis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1