全面了解非晶 H 端硅纳米结构的光学特性:将 TD-DFT 与 AIMD 相结合

Q3 Physics and Astronomy Results in Optics Pub Date : 2024-07-01 DOI:10.1016/j.rio.2024.100694
{"title":"全面了解非晶 H 端硅纳米结构的光学特性:将 TD-DFT 与 AIMD 相结合","authors":"","doi":"10.1016/j.rio.2024.100694","DOIUrl":null,"url":null,"abstract":"<div><p>Silicon, traditionally known as an indirect band gap semiconductor, unveils intriguing properties at the nanoscale, stemming from deviations from k-conservation rules within nanostructures. In our study, we scrutinized four hydrogenated Si 0D-nanostructures—Si<sub>10</sub>H<sub>16</sub>, Si<sub>14</sub>H<sub>20</sub>, Si<sub>18</sub>H<sub>24</sub>, and Si<sub>22</sub>H<sub>28</sub>—to unravel their dynamic stability under thermal fluctuations and optical characteristics. We initiated our exploration by employing the TD-DFT framework to generate and analyze the optical properties of these geometrically optimized nanostructures. Simultaneously, we conducted ab initio molecular dynamics simulations to examine the structural robustness and thermal stability of the four structures. Leveraging the Car-Parrinello molecular dynamics approach within the Quantum ESPRESSO open software suite, we observed temperature evolution and stability differences among the nanostructures at targeted temperatures 40 and 300 K. Our subsequent investigation delved into the Turbo-Lanczos time-dependent DFT method, unraveling the optical properties and excited-state dynamics of hydrogenated Si nanostructures. The results unveiled shifts towards higher energy absorption edges E<sub>0</sub>, accompanied by alterations in the permittivity tensor, complex refractive index, oscillator strength, and reflectivity. Notably, the analysis revealed an enlarged HOMO-LUMO gap, distinctive from bulk Si. Furthermore, our models predicted the elimination of phase-dependent E<sub>1</sub>/E<sub>2</sub> optical transition peaks in the imaginary part of the dielectric function, and a gradual decrease in the low-frequency dielectric response with increased hydrogenation of the amorphous structures. These findings underscore the promising applications of hydrogenating Si nanostructures in diverse technological domains such as optoelectronics, memristors, sensors, and quantum computing. Their tunable optical properties, size-dependent behaviors, and compatibility with existing silicon-based devices make them particularly appealing for next-generation technologies.</p></div>","PeriodicalId":21151,"journal":{"name":"Results in Optics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666950124000919/pdfft?md5=4bf3d55996d866e8ab8438667092ded7&pid=1-s2.0-S2666950124000919-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A holistic understanding of optical properties in amorphous H-terminated Si-nanostructures: Combining TD-DFT with AIMD\",\"authors\":\"\",\"doi\":\"10.1016/j.rio.2024.100694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Silicon, traditionally known as an indirect band gap semiconductor, unveils intriguing properties at the nanoscale, stemming from deviations from k-conservation rules within nanostructures. In our study, we scrutinized four hydrogenated Si 0D-nanostructures—Si<sub>10</sub>H<sub>16</sub>, Si<sub>14</sub>H<sub>20</sub>, Si<sub>18</sub>H<sub>24</sub>, and Si<sub>22</sub>H<sub>28</sub>—to unravel their dynamic stability under thermal fluctuations and optical characteristics. We initiated our exploration by employing the TD-DFT framework to generate and analyze the optical properties of these geometrically optimized nanostructures. Simultaneously, we conducted ab initio molecular dynamics simulations to examine the structural robustness and thermal stability of the four structures. Leveraging the Car-Parrinello molecular dynamics approach within the Quantum ESPRESSO open software suite, we observed temperature evolution and stability differences among the nanostructures at targeted temperatures 40 and 300 K. Our subsequent investigation delved into the Turbo-Lanczos time-dependent DFT method, unraveling the optical properties and excited-state dynamics of hydrogenated Si nanostructures. The results unveiled shifts towards higher energy absorption edges E<sub>0</sub>, accompanied by alterations in the permittivity tensor, complex refractive index, oscillator strength, and reflectivity. Notably, the analysis revealed an enlarged HOMO-LUMO gap, distinctive from bulk Si. Furthermore, our models predicted the elimination of phase-dependent E<sub>1</sub>/E<sub>2</sub> optical transition peaks in the imaginary part of the dielectric function, and a gradual decrease in the low-frequency dielectric response with increased hydrogenation of the amorphous structures. These findings underscore the promising applications of hydrogenating Si nanostructures in diverse technological domains such as optoelectronics, memristors, sensors, and quantum computing. Their tunable optical properties, size-dependent behaviors, and compatibility with existing silicon-based devices make them particularly appealing for next-generation technologies.</p></div>\",\"PeriodicalId\":21151,\"journal\":{\"name\":\"Results in Optics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666950124000919/pdfft?md5=4bf3d55996d866e8ab8438667092ded7&pid=1-s2.0-S2666950124000919-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666950124000919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Optics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666950124000919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

硅历来被认为是一种间接带隙半导体,但在纳米尺度上,它却因偏离了纳米结构中的 k 保留规则而展现出了引人入胜的特性。在我们的研究中,我们仔细研究了四种氢化硅 0D 纳米结构--Si10H16、Si14H20、Si18H24 和 Si22H28,以揭示它们在热波动下的动态稳定性和光学特性。我们首先采用 TD-DFT 框架来生成和分析这些几何优化纳米结构的光学特性。同时,我们还进行了 ab initio 分子动力学模拟,以检验这四种结构的结构稳健性和热稳定性。利用量子 ESPRESSO 开放软件套件中的 Car-Parrinello 分子动力学方法,我们观察了纳米结构在目标温度 40 和 300 K 时的温度演变和稳定性差异。研究结果表明,氢化硅纳米结构向更高能量的吸收边缘 E0 移动,并伴随着介电常数张量、复折射率、振荡器强度和反射率的变化。值得注意的是,分析表明 HOMO-LUMO 间隙增大,与块状硅截然不同。此外,根据我们的模型预测,介电函数虚部中与相位相关的 E1/E2 光学转变峰会消失,而且随着非晶结构氢化程度的增加,低频介电响应会逐渐降低。这些发现强调了氢化硅纳米结构在光电子学、忆阻器、传感器和量子计算等不同技术领域的应用前景。这些纳米结构具有可调的光学特性、与尺寸相关的行为以及与现有硅基器件的兼容性,因此对下一代技术特别有吸引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A holistic understanding of optical properties in amorphous H-terminated Si-nanostructures: Combining TD-DFT with AIMD

Silicon, traditionally known as an indirect band gap semiconductor, unveils intriguing properties at the nanoscale, stemming from deviations from k-conservation rules within nanostructures. In our study, we scrutinized four hydrogenated Si 0D-nanostructures—Si10H16, Si14H20, Si18H24, and Si22H28—to unravel their dynamic stability under thermal fluctuations and optical characteristics. We initiated our exploration by employing the TD-DFT framework to generate and analyze the optical properties of these geometrically optimized nanostructures. Simultaneously, we conducted ab initio molecular dynamics simulations to examine the structural robustness and thermal stability of the four structures. Leveraging the Car-Parrinello molecular dynamics approach within the Quantum ESPRESSO open software suite, we observed temperature evolution and stability differences among the nanostructures at targeted temperatures 40 and 300 K. Our subsequent investigation delved into the Turbo-Lanczos time-dependent DFT method, unraveling the optical properties and excited-state dynamics of hydrogenated Si nanostructures. The results unveiled shifts towards higher energy absorption edges E0, accompanied by alterations in the permittivity tensor, complex refractive index, oscillator strength, and reflectivity. Notably, the analysis revealed an enlarged HOMO-LUMO gap, distinctive from bulk Si. Furthermore, our models predicted the elimination of phase-dependent E1/E2 optical transition peaks in the imaginary part of the dielectric function, and a gradual decrease in the low-frequency dielectric response with increased hydrogenation of the amorphous structures. These findings underscore the promising applications of hydrogenating Si nanostructures in diverse technological domains such as optoelectronics, memristors, sensors, and quantum computing. Their tunable optical properties, size-dependent behaviors, and compatibility with existing silicon-based devices make them particularly appealing for next-generation technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Optics
Results in Optics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
2.50
自引率
0.00%
发文量
115
审稿时长
71 days
期刊最新文献
Effect of annealing and roughness on the magnetic-optical, adhesive, nano-mechanical, and electrical properties of Co60Fe20Dy20 films Monocrystalline photovoltaic material based symmetrical and unsymmetrical Triple-Series Parallel-Ladder configuration for harvesting maximum power under partial shading conditions Editorial to the Special Issue “Nanophotonics and optical fibers: New avenues for sensing and active devices” A holistic understanding of optical properties in amorphous H-terminated Si-nanostructures: Combining TD-DFT with AIMD Diabetic retinopathy detection through generative AI techniques: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1