结合实时和综合模型的剩余使用寿命预测算法,用于预测隐藏式致动器的退化情况

IF 6.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS ISA transactions Pub Date : 2024-08-01 DOI:10.1016/j.isatra.2024.05.033
{"title":"结合实时和综合模型的剩余使用寿命预测算法,用于预测隐藏式致动器的退化情况","authors":"","doi":"10.1016/j.isatra.2024.05.033","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposed a prediction algorithm for the degraded actuator taking into account the impact of estimation error of hidden index in the closed-loop system. To this end, a unified prediction framework is established to evaluate the hidden degradation information and recursively update the degradation model parameters simultaneously. The advantage is that the prediction framework can comprehensively compensate the estimation error of hidden degradation index caused by system uncertainty. To jointly estimate the degradation information in avoidance of the impact of system uncertainty, a modified adaptive Kalman filter is designed, and the proof of stability is provided. With the priori estimate from the filter, the degradation model parameters are updated by the inverse filtering probability based on Bayes’ theorem. It is followed by the computation of the remaining useful life (RUL) prediction utilizing aforementioned hidden degradation information and the latest degradation model. The effectiveness of the proposed RUL prediction algorithm is demonstrated by the degraded actuator in the continuous casting process.</p></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"151 ","pages":"Pages 243-257"},"PeriodicalIF":6.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A remaining useful life prediction algorithm incorporating real-time and integrated model for hidden actuator degradation\",\"authors\":\"\",\"doi\":\"10.1016/j.isatra.2024.05.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper proposed a prediction algorithm for the degraded actuator taking into account the impact of estimation error of hidden index in the closed-loop system. To this end, a unified prediction framework is established to evaluate the hidden degradation information and recursively update the degradation model parameters simultaneously. The advantage is that the prediction framework can comprehensively compensate the estimation error of hidden degradation index caused by system uncertainty. To jointly estimate the degradation information in avoidance of the impact of system uncertainty, a modified adaptive Kalman filter is designed, and the proof of stability is provided. With the priori estimate from the filter, the degradation model parameters are updated by the inverse filtering probability based on Bayes’ theorem. It is followed by the computation of the remaining useful life (RUL) prediction utilizing aforementioned hidden degradation information and the latest degradation model. The effectiveness of the proposed RUL prediction algorithm is demonstrated by the degraded actuator in the continuous casting process.</p></div>\",\"PeriodicalId\":14660,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\"151 \",\"pages\":\"Pages 243-257\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019057824002362\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057824002362","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

考虑到闭环系统中隐藏指标估计误差的影响,本文提出了一种退化致动器预测算法。为此,本文建立了一个统一的预测框架,用于评估隐藏的退化信息,并同时递归更新退化模型参数。这样做的好处是,预测框架可以全面补偿系统不确定性造成的隐性退化指标估计误差。为了共同估计退化信息以避免系统不确定性的影响,设计了一种改进的自适应卡尔曼滤波器,并提供了稳定性证明。利用滤波器的先验估计,通过基于贝叶斯定理的反滤波概率更新退化模型参数。随后,利用上述隐藏的退化信息和最新的退化模型计算剩余使用寿命(RUL)预测。建议的 RUL 预测算法的有效性通过连铸过程中退化的执行器得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A remaining useful life prediction algorithm incorporating real-time and integrated model for hidden actuator degradation

This paper proposed a prediction algorithm for the degraded actuator taking into account the impact of estimation error of hidden index in the closed-loop system. To this end, a unified prediction framework is established to evaluate the hidden degradation information and recursively update the degradation model parameters simultaneously. The advantage is that the prediction framework can comprehensively compensate the estimation error of hidden degradation index caused by system uncertainty. To jointly estimate the degradation information in avoidance of the impact of system uncertainty, a modified adaptive Kalman filter is designed, and the proof of stability is provided. With the priori estimate from the filter, the degradation model parameters are updated by the inverse filtering probability based on Bayes’ theorem. It is followed by the computation of the remaining useful life (RUL) prediction utilizing aforementioned hidden degradation information and the latest degradation model. The effectiveness of the proposed RUL prediction algorithm is demonstrated by the degraded actuator in the continuous casting process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ISA transactions
ISA transactions 工程技术-工程:综合
CiteScore
11.70
自引率
12.30%
发文量
824
审稿时长
4.4 months
期刊介绍: ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.
期刊最新文献
Editorial Board ROM-based stochastic optimization for a continuous manufacturing process Multiscale dynamically parallel shrinkage network for fault diagnosis of aviation hydraulic pump and its generalizable applications Uncertainty propagation from probe spacing to Fourier 3-probe straightness measurement Event-triggered adaptive neural prescribed performance admittance control for constrained robotic systems without velocity measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1