{"title":"结合实时和综合模型的剩余使用寿命预测算法,用于预测隐藏式致动器的退化情况","authors":"","doi":"10.1016/j.isatra.2024.05.033","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposed a prediction algorithm for the degraded actuator taking into account the impact of estimation error of hidden index in the closed-loop system. To this end, a unified prediction framework is established to evaluate the hidden degradation information and recursively update the degradation model parameters simultaneously. The advantage is that the prediction framework can comprehensively compensate the estimation error of hidden degradation index caused by system uncertainty. To jointly estimate the degradation information in avoidance of the impact of system uncertainty, a modified adaptive Kalman filter is designed, and the proof of stability is provided. With the priori estimate from the filter, the degradation model parameters are updated by the inverse filtering probability based on Bayes’ theorem. It is followed by the computation of the remaining useful life (RUL) prediction utilizing aforementioned hidden degradation information and the latest degradation model. The effectiveness of the proposed RUL prediction algorithm is demonstrated by the degraded actuator in the continuous casting process.</p></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"151 ","pages":"Pages 243-257"},"PeriodicalIF":6.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A remaining useful life prediction algorithm incorporating real-time and integrated model for hidden actuator degradation\",\"authors\":\"\",\"doi\":\"10.1016/j.isatra.2024.05.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper proposed a prediction algorithm for the degraded actuator taking into account the impact of estimation error of hidden index in the closed-loop system. To this end, a unified prediction framework is established to evaluate the hidden degradation information and recursively update the degradation model parameters simultaneously. The advantage is that the prediction framework can comprehensively compensate the estimation error of hidden degradation index caused by system uncertainty. To jointly estimate the degradation information in avoidance of the impact of system uncertainty, a modified adaptive Kalman filter is designed, and the proof of stability is provided. With the priori estimate from the filter, the degradation model parameters are updated by the inverse filtering probability based on Bayes’ theorem. It is followed by the computation of the remaining useful life (RUL) prediction utilizing aforementioned hidden degradation information and the latest degradation model. The effectiveness of the proposed RUL prediction algorithm is demonstrated by the degraded actuator in the continuous casting process.</p></div>\",\"PeriodicalId\":14660,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\"151 \",\"pages\":\"Pages 243-257\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019057824002362\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057824002362","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
A remaining useful life prediction algorithm incorporating real-time and integrated model for hidden actuator degradation
This paper proposed a prediction algorithm for the degraded actuator taking into account the impact of estimation error of hidden index in the closed-loop system. To this end, a unified prediction framework is established to evaluate the hidden degradation information and recursively update the degradation model parameters simultaneously. The advantage is that the prediction framework can comprehensively compensate the estimation error of hidden degradation index caused by system uncertainty. To jointly estimate the degradation information in avoidance of the impact of system uncertainty, a modified adaptive Kalman filter is designed, and the proof of stability is provided. With the priori estimate from the filter, the degradation model parameters are updated by the inverse filtering probability based on Bayes’ theorem. It is followed by the computation of the remaining useful life (RUL) prediction utilizing aforementioned hidden degradation information and the latest degradation model. The effectiveness of the proposed RUL prediction algorithm is demonstrated by the degraded actuator in the continuous casting process.
期刊介绍:
ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.