{"title":"可信的非确定性计算的可能世界语义","authors":"Ekaterina Kubyshkina, Giuseppe Primiero","doi":"10.1016/j.ijar.2024.109212","DOIUrl":null,"url":null,"abstract":"<div><p>The notion of trustworthiness, central to many fields of human inquiry, has recently attracted the attention of various researchers in logic, computer science, and artificial intelligence (AI). Both conceptual and formal approaches for modeling trustworthiness as a (desirable) property of AI systems are emerging in the literature. To develop logics fit for this aim means to analyze both the non-deterministic aspect of AI systems and to offer a formalization of the intended meaning of their trustworthiness. In this work we take a semantic perspective on representing such processes, and provide a measure on possible worlds for evaluating them as trustworthy. In particular, we intend trustworthiness as the correspondence within acceptable limits between a model in which the theoretical probability of a process to produce a given output is expressed and a model in which the frequency of showing such output as established during a relevant number of tests is measured. From a technical perspective, we show that our semantics characterizes the probabilistic typed natural deduction calculus introduced in D'Asaro and Primiero (2021)<span>[12]</span> and further extended in D'Asaro et al. (2023) <span>[13]</span>. This contribution connects those results on trustworthy probabilistic processes with the mainstream method in modal logic, thereby facilitating the understanding of this field of research for a larger audience of logicians, as well as setting the stage for an epistemic logic appropriate to the task.</p></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"172 ","pages":"Article 109212"},"PeriodicalIF":3.2000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0888613X24000999/pdfft?md5=7a0c991c70c70e79ac2349285a1a28c0&pid=1-s2.0-S0888613X24000999-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A possible worlds semantics for trustworthy non-deterministic computations\",\"authors\":\"Ekaterina Kubyshkina, Giuseppe Primiero\",\"doi\":\"10.1016/j.ijar.2024.109212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The notion of trustworthiness, central to many fields of human inquiry, has recently attracted the attention of various researchers in logic, computer science, and artificial intelligence (AI). Both conceptual and formal approaches for modeling trustworthiness as a (desirable) property of AI systems are emerging in the literature. To develop logics fit for this aim means to analyze both the non-deterministic aspect of AI systems and to offer a formalization of the intended meaning of their trustworthiness. In this work we take a semantic perspective on representing such processes, and provide a measure on possible worlds for evaluating them as trustworthy. In particular, we intend trustworthiness as the correspondence within acceptable limits between a model in which the theoretical probability of a process to produce a given output is expressed and a model in which the frequency of showing such output as established during a relevant number of tests is measured. From a technical perspective, we show that our semantics characterizes the probabilistic typed natural deduction calculus introduced in D'Asaro and Primiero (2021)<span>[12]</span> and further extended in D'Asaro et al. (2023) <span>[13]</span>. This contribution connects those results on trustworthy probabilistic processes with the mainstream method in modal logic, thereby facilitating the understanding of this field of research for a larger audience of logicians, as well as setting the stage for an epistemic logic appropriate to the task.</p></div>\",\"PeriodicalId\":13842,\"journal\":{\"name\":\"International Journal of Approximate Reasoning\",\"volume\":\"172 \",\"pages\":\"Article 109212\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0888613X24000999/pdfft?md5=7a0c991c70c70e79ac2349285a1a28c0&pid=1-s2.0-S0888613X24000999-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Approximate Reasoning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0888613X24000999\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X24000999","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A possible worlds semantics for trustworthy non-deterministic computations
The notion of trustworthiness, central to many fields of human inquiry, has recently attracted the attention of various researchers in logic, computer science, and artificial intelligence (AI). Both conceptual and formal approaches for modeling trustworthiness as a (desirable) property of AI systems are emerging in the literature. To develop logics fit for this aim means to analyze both the non-deterministic aspect of AI systems and to offer a formalization of the intended meaning of their trustworthiness. In this work we take a semantic perspective on representing such processes, and provide a measure on possible worlds for evaluating them as trustworthy. In particular, we intend trustworthiness as the correspondence within acceptable limits between a model in which the theoretical probability of a process to produce a given output is expressed and a model in which the frequency of showing such output as established during a relevant number of tests is measured. From a technical perspective, we show that our semantics characterizes the probabilistic typed natural deduction calculus introduced in D'Asaro and Primiero (2021)[12] and further extended in D'Asaro et al. (2023) [13]. This contribution connects those results on trustworthy probabilistic processes with the mainstream method in modal logic, thereby facilitating the understanding of this field of research for a larger audience of logicians, as well as setting the stage for an epistemic logic appropriate to the task.
期刊介绍:
The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest.
Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning.
Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.