Yueming Su , Qiusheng Lian , Dan Zhang , Baoshun Shi
{"title":"基于变压器的压缩传感道格拉斯-拉赫福德展开网络","authors":"Yueming Su , Qiusheng Lian , Dan Zhang , Baoshun Shi","doi":"10.1016/j.image.2024.117153","DOIUrl":null,"url":null,"abstract":"<div><p>Compressed sensing (CS) with the binary sampling matrix is hardware-friendly and memory-saving in the signal processing field. Existing Convolutional Neural Network (CNN)-based CS methods show potential restrictions in exploiting non-local similarity and lack interpretability. In parallel, the emerging Transformer architecture performs well in modelling long-range correlations. To further improve the CS reconstruction quality from highly under-sampled CS measurements, a Transformer based deep unrolling reconstruction network abbreviated as DR-TransNet is proposed, whose design is inspired by the traditional iterative Douglas-Rachford algorithm. It combines the merits of structure insights of optimization-based methods and the speed of the network-based ones. Therein, a U-type Transformer based proximal sub-network is elaborated to reconstruct images in the wavelet domain and the spatial domain as an auxiliary mode, which aims to explore local informative details and global long-term interaction of the images. Specially, a flexible single model is trained to address the CS reconstruction with different binary CS sampling ratios. Compared with the state-of-the-art CS reconstruction methods with the binary sampling matrix, the proposed method can achieve appealing improvements in terms of Peak Signal to Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM) and visual metrics. Codes are available at <span>https://github.com/svyueming/DR-TransNet</span><svg><path></path></svg>.</p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"127 ","pages":"Article 117153"},"PeriodicalIF":3.4000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transformer based Douglas-Rachford unrolling network for compressed sensing\",\"authors\":\"Yueming Su , Qiusheng Lian , Dan Zhang , Baoshun Shi\",\"doi\":\"10.1016/j.image.2024.117153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Compressed sensing (CS) with the binary sampling matrix is hardware-friendly and memory-saving in the signal processing field. Existing Convolutional Neural Network (CNN)-based CS methods show potential restrictions in exploiting non-local similarity and lack interpretability. In parallel, the emerging Transformer architecture performs well in modelling long-range correlations. To further improve the CS reconstruction quality from highly under-sampled CS measurements, a Transformer based deep unrolling reconstruction network abbreviated as DR-TransNet is proposed, whose design is inspired by the traditional iterative Douglas-Rachford algorithm. It combines the merits of structure insights of optimization-based methods and the speed of the network-based ones. Therein, a U-type Transformer based proximal sub-network is elaborated to reconstruct images in the wavelet domain and the spatial domain as an auxiliary mode, which aims to explore local informative details and global long-term interaction of the images. Specially, a flexible single model is trained to address the CS reconstruction with different binary CS sampling ratios. Compared with the state-of-the-art CS reconstruction methods with the binary sampling matrix, the proposed method can achieve appealing improvements in terms of Peak Signal to Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM) and visual metrics. Codes are available at <span>https://github.com/svyueming/DR-TransNet</span><svg><path></path></svg>.</p></div>\",\"PeriodicalId\":49521,\"journal\":{\"name\":\"Signal Processing-Image Communication\",\"volume\":\"127 \",\"pages\":\"Article 117153\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing-Image Communication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923596524000547\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596524000547","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Transformer based Douglas-Rachford unrolling network for compressed sensing
Compressed sensing (CS) with the binary sampling matrix is hardware-friendly and memory-saving in the signal processing field. Existing Convolutional Neural Network (CNN)-based CS methods show potential restrictions in exploiting non-local similarity and lack interpretability. In parallel, the emerging Transformer architecture performs well in modelling long-range correlations. To further improve the CS reconstruction quality from highly under-sampled CS measurements, a Transformer based deep unrolling reconstruction network abbreviated as DR-TransNet is proposed, whose design is inspired by the traditional iterative Douglas-Rachford algorithm. It combines the merits of structure insights of optimization-based methods and the speed of the network-based ones. Therein, a U-type Transformer based proximal sub-network is elaborated to reconstruct images in the wavelet domain and the spatial domain as an auxiliary mode, which aims to explore local informative details and global long-term interaction of the images. Specially, a flexible single model is trained to address the CS reconstruction with different binary CS sampling ratios. Compared with the state-of-the-art CS reconstruction methods with the binary sampling matrix, the proposed method can achieve appealing improvements in terms of Peak Signal to Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM) and visual metrics. Codes are available at https://github.com/svyueming/DR-TransNet.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.