{"title":"在非常规酵母 Kluyveromyces marxianus 中设计碳源响应型启动子以提高生物合成能力","authors":"Shane Bassett, Nancy A. Da Silva","doi":"10.1016/j.mec.2024.e00238","DOIUrl":null,"url":null,"abstract":"<div><p>Many desired biobased chemicals exhibit a range of toxicity to microbial cell factories, making industry-level biomanufacturing more challenging. Separating microbial growth and production phases is known to be beneficial for improving production of toxic products. Here, we developed a novel synthetic carbon-responsive promoter for use in the rapidly growing, stress-tolerant yeast <em>Kluyveromyces marxianus</em>, by fusing carbon-source responsive elements of the native <em>ICL1</em> promoter to the strong <em>S. cerevisiae TDH3</em> or native <em>NC1</em> promoter cores. Two hybrids, P<sub><em>IT350</em></sub> and P<sub><em>IN450</em></sub>, were validated via EGFP fluorescence and demonstrated exceptional strength, partial repression during growth, and late phase activation in glucose- and lactose-based medium, respectively. Expressing the <em>Gerbera hybrida</em> 2-pyrone synthase (2-PS) for synthesis of the polyketide triacetic acid lactone (TAL) under the control of P<sub><em>IN450</em></sub> increased TAL more than 50% relative to the native <em>NC1</em> promoter, and additional promoter engineering further increased TAL titer to 1.39 g/L in tube culture. Expression of the <em>Penicillium griseofulvum</em> 6-methylsalicylic acid synthase (6-MSAS) under the control of P<sub><em>IN450</em></sub> resulted in a 6.6-fold increase in 6-MSA titer to 1.09 g/L and a simultaneous 1.5-fold increase in cell growth. Finally, we used P<sub><em>IN450</em></sub> to express the <em>Pseudomonas savastanoi</em> IaaM and IaaH proteins and the <em>Salvia pomifera</em> sabinene synthase protein to improve production of the auxin hormone indole-3-acetic acid and the monoterpene sabinene, respectively, both extremely toxic to yeast. The development of carbon-responsive promoters adds to the synthetic biology toolbox and available metabolic engineering strategies for <em>K. marxianus</em>, allowing greater control over heterologous protein expression and improved production of toxic metabolites.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"18 ","pages":"Article e00238"},"PeriodicalIF":3.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214030124000075/pdfft?md5=e04d392e835f23dae63c13b029270ea3&pid=1-s2.0-S2214030124000075-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Engineering a carbon source-responsive promoter for improved biosynthesis in the non-conventional yeast Kluyveromyces marxianus\",\"authors\":\"Shane Bassett, Nancy A. Da Silva\",\"doi\":\"10.1016/j.mec.2024.e00238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Many desired biobased chemicals exhibit a range of toxicity to microbial cell factories, making industry-level biomanufacturing more challenging. Separating microbial growth and production phases is known to be beneficial for improving production of toxic products. Here, we developed a novel synthetic carbon-responsive promoter for use in the rapidly growing, stress-tolerant yeast <em>Kluyveromyces marxianus</em>, by fusing carbon-source responsive elements of the native <em>ICL1</em> promoter to the strong <em>S. cerevisiae TDH3</em> or native <em>NC1</em> promoter cores. Two hybrids, P<sub><em>IT350</em></sub> and P<sub><em>IN450</em></sub>, were validated via EGFP fluorescence and demonstrated exceptional strength, partial repression during growth, and late phase activation in glucose- and lactose-based medium, respectively. Expressing the <em>Gerbera hybrida</em> 2-pyrone synthase (2-PS) for synthesis of the polyketide triacetic acid lactone (TAL) under the control of P<sub><em>IN450</em></sub> increased TAL more than 50% relative to the native <em>NC1</em> promoter, and additional promoter engineering further increased TAL titer to 1.39 g/L in tube culture. Expression of the <em>Penicillium griseofulvum</em> 6-methylsalicylic acid synthase (6-MSAS) under the control of P<sub><em>IN450</em></sub> resulted in a 6.6-fold increase in 6-MSA titer to 1.09 g/L and a simultaneous 1.5-fold increase in cell growth. Finally, we used P<sub><em>IN450</em></sub> to express the <em>Pseudomonas savastanoi</em> IaaM and IaaH proteins and the <em>Salvia pomifera</em> sabinene synthase protein to improve production of the auxin hormone indole-3-acetic acid and the monoterpene sabinene, respectively, both extremely toxic to yeast. The development of carbon-responsive promoters adds to the synthetic biology toolbox and available metabolic engineering strategies for <em>K. marxianus</em>, allowing greater control over heterologous protein expression and improved production of toxic metabolites.</p></div>\",\"PeriodicalId\":18695,\"journal\":{\"name\":\"Metabolic Engineering Communications\",\"volume\":\"18 \",\"pages\":\"Article e00238\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214030124000075/pdfft?md5=e04d392e835f23dae63c13b029270ea3&pid=1-s2.0-S2214030124000075-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic Engineering Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214030124000075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic Engineering Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214030124000075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Engineering a carbon source-responsive promoter for improved biosynthesis in the non-conventional yeast Kluyveromyces marxianus
Many desired biobased chemicals exhibit a range of toxicity to microbial cell factories, making industry-level biomanufacturing more challenging. Separating microbial growth and production phases is known to be beneficial for improving production of toxic products. Here, we developed a novel synthetic carbon-responsive promoter for use in the rapidly growing, stress-tolerant yeast Kluyveromyces marxianus, by fusing carbon-source responsive elements of the native ICL1 promoter to the strong S. cerevisiae TDH3 or native NC1 promoter cores. Two hybrids, PIT350 and PIN450, were validated via EGFP fluorescence and demonstrated exceptional strength, partial repression during growth, and late phase activation in glucose- and lactose-based medium, respectively. Expressing the Gerbera hybrida 2-pyrone synthase (2-PS) for synthesis of the polyketide triacetic acid lactone (TAL) under the control of PIN450 increased TAL more than 50% relative to the native NC1 promoter, and additional promoter engineering further increased TAL titer to 1.39 g/L in tube culture. Expression of the Penicillium griseofulvum 6-methylsalicylic acid synthase (6-MSAS) under the control of PIN450 resulted in a 6.6-fold increase in 6-MSA titer to 1.09 g/L and a simultaneous 1.5-fold increase in cell growth. Finally, we used PIN450 to express the Pseudomonas savastanoi IaaM and IaaH proteins and the Salvia pomifera sabinene synthase protein to improve production of the auxin hormone indole-3-acetic acid and the monoterpene sabinene, respectively, both extremely toxic to yeast. The development of carbon-responsive promoters adds to the synthetic biology toolbox and available metabolic engineering strategies for K. marxianus, allowing greater control over heterologous protein expression and improved production of toxic metabolites.
期刊介绍:
Metabolic Engineering Communications, a companion title to Metabolic Engineering (MBE), is devoted to publishing original research in the areas of metabolic engineering, synthetic biology, computational biology and systems biology for problems related to metabolism and the engineering of metabolism for the production of fuels, chemicals, and pharmaceuticals. The journal will carry articles on the design, construction, and analysis of biological systems ranging from pathway components to biological complexes and genomes (including genomic, analytical and bioinformatics methods) in suitable host cells to allow them to produce novel compounds of industrial and medical interest. Demonstrations of regulatory designs and synthetic circuits that alter the performance of biochemical pathways and cellular processes will also be presented. Metabolic Engineering Communications complements MBE by publishing articles that are either shorter than those published in the full journal, or which describe key elements of larger metabolic engineering efforts.