制动指数为 $n>0$ 和 $n<0$ 的脉冲星参数对比分析

IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Astrophysics and Space Science Pub Date : 2024-05-22 DOI:10.1007/s10509-024-04317-3
C. C. Onuchukwu, E. Legahara
{"title":"制动指数为 $n>0$ 和 $n<0$ 的脉冲星参数对比分析","authors":"C. C. Onuchukwu,&nbsp;E. Legahara","doi":"10.1007/s10509-024-04317-3","DOIUrl":null,"url":null,"abstract":"<div><p>We analyzed the timing parameters (the rotational frequency <span>\\(\\nu \\)</span>, the first <span>\\(\\left ( \\dot{\\nu } \\right )\\)</span> and second <span>\\(\\left ( \\ddot{\\nu } \\right )\\)</span> time-derivatives of frequency) and the derived parameters of a sample of pulsars for which <span>\\(\\ddot{\\nu } \\)</span> (470 pulsars) were recorded in the Australian Telescope National Facility (ATNF) pulsar catalog. We formed various subsamples, those with braking indices <span>\\(n&lt;0\\)</span> and <span>\\(n&gt;0\\)</span>, and glitching and non-glitching pulsars. Our statistical analyses of the timing and derived parameters indicated some level of differences and similarities among the parameters analyzed. Glitching pulsars appear to have a higher rotational frequency than non-glitching pulsars, and pulsars with <span>\\(n&gt;0\\)</span> appear to rotate faster than those with <span>\\(n&lt;0\\)</span>. Our results also suggest that glitching pulsars have lower values of <span>\\(\\left \\vert n \\right \\vert \\)</span> (where <span>\\(\\left \\vert n \\right \\vert \\)</span> is the absolute value of the braking index), and it is lower for the subsample with <span>\\(n&gt;0\\)</span> than for the subsample with <span>\\(n&lt;0\\)</span>. We believe that the results obtained could be useful in understanding the evolution of pulsar spin.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"369 5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of the parameters of pulsars with braking indices \\\\(n>0\\\\) and \\\\(n<0\\\\)\",\"authors\":\"C. C. Onuchukwu,&nbsp;E. Legahara\",\"doi\":\"10.1007/s10509-024-04317-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We analyzed the timing parameters (the rotational frequency <span>\\\\(\\\\nu \\\\)</span>, the first <span>\\\\(\\\\left ( \\\\dot{\\\\nu } \\\\right )\\\\)</span> and second <span>\\\\(\\\\left ( \\\\ddot{\\\\nu } \\\\right )\\\\)</span> time-derivatives of frequency) and the derived parameters of a sample of pulsars for which <span>\\\\(\\\\ddot{\\\\nu } \\\\)</span> (470 pulsars) were recorded in the Australian Telescope National Facility (ATNF) pulsar catalog. We formed various subsamples, those with braking indices <span>\\\\(n&lt;0\\\\)</span> and <span>\\\\(n&gt;0\\\\)</span>, and glitching and non-glitching pulsars. Our statistical analyses of the timing and derived parameters indicated some level of differences and similarities among the parameters analyzed. Glitching pulsars appear to have a higher rotational frequency than non-glitching pulsars, and pulsars with <span>\\\\(n&gt;0\\\\)</span> appear to rotate faster than those with <span>\\\\(n&lt;0\\\\)</span>. Our results also suggest that glitching pulsars have lower values of <span>\\\\(\\\\left \\\\vert n \\\\right \\\\vert \\\\)</span> (where <span>\\\\(\\\\left \\\\vert n \\\\right \\\\vert \\\\)</span> is the absolute value of the braking index), and it is lower for the subsample with <span>\\\\(n&gt;0\\\\)</span> than for the subsample with <span>\\\\(n&lt;0\\\\)</span>. We believe that the results obtained could be useful in understanding the evolution of pulsar spin.</p></div>\",\"PeriodicalId\":8644,\"journal\":{\"name\":\"Astrophysics and Space Science\",\"volume\":\"369 5\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysics and Space Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10509-024-04317-3\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-024-04317-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

我们分析了时间参数(旋转频率)、我们分析了澳大利亚国家望远镜设施(ATNF)脉冲星目录中记录的脉冲星(470颗)的第一个(左)和第二个(左)频率的时间衍生物以及衍生参数。我们形成了不同的子样本,包括制动指数为\(n<0\)和\(n>0\)的脉冲星,以及闪烁和非闪烁脉冲星。我们对定时和衍生参数的统计分析表明,所分析的参数之间存在一定程度的差异和相似性。与非闪烁脉冲星相比,闪烁脉冲星的旋转频率似乎更高,而具有(n>0\)的脉冲星似乎比具有(n<0\)的脉冲星旋转得更快。我们的结果还表明,闪烁脉冲星的\(\left \vert n \right \vert \)(其中\(\left \vert n \right \vert \)是制动指数的绝对值)值较低,而且具有\(n>0\)的子样本的制动指数低于具有\(n<0\)的子样本。我们相信所获得的结果有助于理解脉冲星自旋的演变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative analysis of the parameters of pulsars with braking indices \(n>0\) and \(n<0\)

We analyzed the timing parameters (the rotational frequency \(\nu \), the first \(\left ( \dot{\nu } \right )\) and second \(\left ( \ddot{\nu } \right )\) time-derivatives of frequency) and the derived parameters of a sample of pulsars for which \(\ddot{\nu } \) (470 pulsars) were recorded in the Australian Telescope National Facility (ATNF) pulsar catalog. We formed various subsamples, those with braking indices \(n<0\) and \(n>0\), and glitching and non-glitching pulsars. Our statistical analyses of the timing and derived parameters indicated some level of differences and similarities among the parameters analyzed. Glitching pulsars appear to have a higher rotational frequency than non-glitching pulsars, and pulsars with \(n>0\) appear to rotate faster than those with \(n<0\). Our results also suggest that glitching pulsars have lower values of \(\left \vert n \right \vert \) (where \(\left \vert n \right \vert \) is the absolute value of the braking index), and it is lower for the subsample with \(n>0\) than for the subsample with \(n<0\). We believe that the results obtained could be useful in understanding the evolution of pulsar spin.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astrophysics and Space Science
Astrophysics and Space Science 地学天文-天文与天体物理
CiteScore
3.40
自引率
5.30%
发文量
106
审稿时长
2-4 weeks
期刊介绍: Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered. The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing. Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.
期刊最新文献
Turbulence and chaotic structure generated by nonlinear kinetic Alfvén waves near magnetic null points in solar corona Images in axially symmetric gravitational lenses from elliptical sources: the elimination method Following the tidal trail: a history of modeling the Magellanic Stream Investigation of non-substorm Pi2 magnetic pulsation during solar flare event Resolved stellar populations as a key to unlocking the formation and evolution of galaxies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1