最近在糠醛转化方面的催化创新

IF 9.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Green Chemistry Pub Date : 2024-09-30 DOI:10.1039/d4gc01983k
{"title":"最近在糠醛转化方面的催化创新","authors":"","doi":"10.1039/d4gc01983k","DOIUrl":null,"url":null,"abstract":"<div><div>To address the problem of non-renewable resources and energy shortages, converting biomass, the only renewable carbon resource on Earth, into various fine chemicals holds significant value. Furfural stands out as one of the most promising platform compounds derived from lignocellulosic biomass. Due to its highly functional molecular structure, furfural can be selectively converted into various fuels and high-value compounds. This review discusses recent developments in furfural production and its conversion into related chemicals, such as furfuryl alcohol, γ-valerolactone, pentanediols, and nitrogen-containing compounds. It provides an in-depth understanding of the catalysts, systems, and mechanisms used in the selective transformation of furfural. The review also explores primary pathways and catalytic mechanisms, with a focus on advances in heterogeneous catalytic systems. Furthermore, it outlines future research directions and offers insights into potential applications in this field. This review presents several research trends, aiming to provide innovative ideas for further exploration of furfural downstream products in a greener, more efficient, and cost-effective manner.</div></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":"26 19","pages":"Pages 9957-9992"},"PeriodicalIF":9.3000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent catalytic innovations in furfural transformation\",\"authors\":\"\",\"doi\":\"10.1039/d4gc01983k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To address the problem of non-renewable resources and energy shortages, converting biomass, the only renewable carbon resource on Earth, into various fine chemicals holds significant value. Furfural stands out as one of the most promising platform compounds derived from lignocellulosic biomass. Due to its highly functional molecular structure, furfural can be selectively converted into various fuels and high-value compounds. This review discusses recent developments in furfural production and its conversion into related chemicals, such as furfuryl alcohol, γ-valerolactone, pentanediols, and nitrogen-containing compounds. It provides an in-depth understanding of the catalysts, systems, and mechanisms used in the selective transformation of furfural. The review also explores primary pathways and catalytic mechanisms, with a focus on advances in heterogeneous catalytic systems. Furthermore, it outlines future research directions and offers insights into potential applications in this field. This review presents several research trends, aiming to provide innovative ideas for further exploration of furfural downstream products in a greener, more efficient, and cost-effective manner.</div></div>\",\"PeriodicalId\":78,\"journal\":{\"name\":\"Green Chemistry\",\"volume\":\"26 19\",\"pages\":\"Pages 9957-9992\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1463926224007532\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926224007532","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为解决不可再生资源和能源短缺问题,将生物质这一地球上唯一的可再生碳资源转化为各种精细化学品具有重要价值。糠醛是从木质纤维素生物质中提取的最有前途的平台化合物之一。由于糠醛具有高功能性分子结构,因此可选择性地转化为各种燃料和高价值化合物。本综述讨论了糠醛生产及其转化为相关化学品(如糠醇、γ-戊内酯、戊二醇和含氮化合物)的最新进展。报告深入介绍了用于糠醛选择性转化的催化剂、系统和机制。该综述还探讨了主要途径和催化机制,重点关注异质催化系统的进展。此外,它还概述了未来的研究方向,并对这一领域的潜在应用提出了见解。本综述介绍了几种研究趋势,旨在为以更环保、更高效、更具成本效益的方式进一步探索糠醛下游产品提供创新思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent catalytic innovations in furfural transformation
To address the problem of non-renewable resources and energy shortages, converting biomass, the only renewable carbon resource on Earth, into various fine chemicals holds significant value. Furfural stands out as one of the most promising platform compounds derived from lignocellulosic biomass. Due to its highly functional molecular structure, furfural can be selectively converted into various fuels and high-value compounds. This review discusses recent developments in furfural production and its conversion into related chemicals, such as furfuryl alcohol, γ-valerolactone, pentanediols, and nitrogen-containing compounds. It provides an in-depth understanding of the catalysts, systems, and mechanisms used in the selective transformation of furfural. The review also explores primary pathways and catalytic mechanisms, with a focus on advances in heterogeneous catalytic systems. Furthermore, it outlines future research directions and offers insights into potential applications in this field. This review presents several research trends, aiming to provide innovative ideas for further exploration of furfural downstream products in a greener, more efficient, and cost-effective manner.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Green Chemistry
Green Chemistry 化学-化学综合
CiteScore
16.10
自引率
7.10%
发文量
677
审稿时长
1.4 months
期刊介绍: Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.
期刊最新文献
Back cover Measuring green chemistry: methods, models, and metrics Inside back cover Back cover Development of a highly efficient electrocatalytic hydrogenation and dehalogenation system using a flow cell with a Pd tube cathode
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1