带有重采样功能的集合卡尔曼滤波器

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-05-23 DOI:10.1137/23m1594935
Omar Al-Ghattas, Jiajun Bao, Daniel Sanz-Alonso
{"title":"带有重采样功能的集合卡尔曼滤波器","authors":"Omar Al-Ghattas, Jiajun Bao, Daniel Sanz-Alonso","doi":"10.1137/23m1594935","DOIUrl":null,"url":null,"abstract":"SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 2, Page 411-441, June 2024. <br/> Abstract.Filtering is concerned with online estimation of the state of a dynamical system from partial and noisy observations. In applications where the state of the system is high dimensional, ensemble Kalman filters are often the method of choice. These algorithms rely on an ensemble of interacting particles to sequentially estimate the state as new observations become available. Despite the practical success of ensemble Kalman filters, theoretical understanding is hindered by the intricate dependence structure of the interacting particles. This paper investigates ensemble Kalman filters that incorporate an additional resampling step to break the dependency between particles. The new algorithm is amenable to a theoretical analysis that extends and improves upon those available for filters without resampling, while also performing well in numerical examples.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ensemble Kalman Filters with Resampling\",\"authors\":\"Omar Al-Ghattas, Jiajun Bao, Daniel Sanz-Alonso\",\"doi\":\"10.1137/23m1594935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 2, Page 411-441, June 2024. <br/> Abstract.Filtering is concerned with online estimation of the state of a dynamical system from partial and noisy observations. In applications where the state of the system is high dimensional, ensemble Kalman filters are often the method of choice. These algorithms rely on an ensemble of interacting particles to sequentially estimate the state as new observations become available. Despite the practical success of ensemble Kalman filters, theoretical understanding is hindered by the intricate dependence structure of the interacting particles. This paper investigates ensemble Kalman filters that incorporate an additional resampling step to break the dependency between particles. The new algorithm is amenable to a theoretical analysis that extends and improves upon those available for filters without resampling, while also performing well in numerical examples.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1594935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/23m1594935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

SIAM/ASA 不确定性量化期刊》,第 12 卷第 2 期,第 411-441 页,2024 年 6 月。 摘要.滤波涉及从部分和噪声观测中在线估计动态系统的状态。在系统状态为高维的应用中,集合卡尔曼滤波器通常是首选方法。这些算法依赖于相互作用的粒子集合,在获得新的观测数据时依次对状态进行估计。尽管集合卡尔曼滤波器在实践中取得了成功,但由于相互作用粒子的依赖结构错综复杂,理论上的理解受到了阻碍。本文研究的集合卡尔曼滤波器包含一个额外的重采样步骤,以打破粒子之间的依赖关系。新算法可用于理论分析,扩展并改进了不带重采样滤波器的理论分析,同时在数值示例中表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ensemble Kalman Filters with Resampling
SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 2, Page 411-441, June 2024.
Abstract.Filtering is concerned with online estimation of the state of a dynamical system from partial and noisy observations. In applications where the state of the system is high dimensional, ensemble Kalman filters are often the method of choice. These algorithms rely on an ensemble of interacting particles to sequentially estimate the state as new observations become available. Despite the practical success of ensemble Kalman filters, theoretical understanding is hindered by the intricate dependence structure of the interacting particles. This paper investigates ensemble Kalman filters that incorporate an additional resampling step to break the dependency between particles. The new algorithm is amenable to a theoretical analysis that extends and improves upon those available for filters without resampling, while also performing well in numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1