带有重采样功能的集合卡尔曼滤波器

IF 2.1 3区 工程技术 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Siam-Asa Journal on Uncertainty Quantification Pub Date : 2024-05-23 DOI:10.1137/23m1594935
Omar Al-Ghattas, Jiajun Bao, Daniel Sanz-Alonso
{"title":"带有重采样功能的集合卡尔曼滤波器","authors":"Omar Al-Ghattas, Jiajun Bao, Daniel Sanz-Alonso","doi":"10.1137/23m1594935","DOIUrl":null,"url":null,"abstract":"SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 2, Page 411-441, June 2024. <br/> Abstract.Filtering is concerned with online estimation of the state of a dynamical system from partial and noisy observations. In applications where the state of the system is high dimensional, ensemble Kalman filters are often the method of choice. These algorithms rely on an ensemble of interacting particles to sequentially estimate the state as new observations become available. Despite the practical success of ensemble Kalman filters, theoretical understanding is hindered by the intricate dependence structure of the interacting particles. This paper investigates ensemble Kalman filters that incorporate an additional resampling step to break the dependency between particles. The new algorithm is amenable to a theoretical analysis that extends and improves upon those available for filters without resampling, while also performing well in numerical examples.","PeriodicalId":56064,"journal":{"name":"Siam-Asa Journal on Uncertainty Quantification","volume":"8 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ensemble Kalman Filters with Resampling\",\"authors\":\"Omar Al-Ghattas, Jiajun Bao, Daniel Sanz-Alonso\",\"doi\":\"10.1137/23m1594935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 2, Page 411-441, June 2024. <br/> Abstract.Filtering is concerned with online estimation of the state of a dynamical system from partial and noisy observations. In applications where the state of the system is high dimensional, ensemble Kalman filters are often the method of choice. These algorithms rely on an ensemble of interacting particles to sequentially estimate the state as new observations become available. Despite the practical success of ensemble Kalman filters, theoretical understanding is hindered by the intricate dependence structure of the interacting particles. This paper investigates ensemble Kalman filters that incorporate an additional resampling step to break the dependency between particles. The new algorithm is amenable to a theoretical analysis that extends and improves upon those available for filters without resampling, while also performing well in numerical examples.\",\"PeriodicalId\":56064,\"journal\":{\"name\":\"Siam-Asa Journal on Uncertainty Quantification\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siam-Asa Journal on Uncertainty Quantification\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1594935\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam-Asa Journal on Uncertainty Quantification","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/23m1594935","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

SIAM/ASA 不确定性量化期刊》,第 12 卷第 2 期,第 411-441 页,2024 年 6 月。 摘要.滤波涉及从部分和噪声观测中在线估计动态系统的状态。在系统状态为高维的应用中,集合卡尔曼滤波器通常是首选方法。这些算法依赖于相互作用的粒子集合,在获得新的观测数据时依次对状态进行估计。尽管集合卡尔曼滤波器在实践中取得了成功,但由于相互作用粒子的依赖结构错综复杂,理论上的理解受到了阻碍。本文研究的集合卡尔曼滤波器包含一个额外的重采样步骤,以打破粒子之间的依赖关系。新算法可用于理论分析,扩展并改进了不带重采样滤波器的理论分析,同时在数值示例中表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ensemble Kalman Filters with Resampling
SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 2, Page 411-441, June 2024.
Abstract.Filtering is concerned with online estimation of the state of a dynamical system from partial and noisy observations. In applications where the state of the system is high dimensional, ensemble Kalman filters are often the method of choice. These algorithms rely on an ensemble of interacting particles to sequentially estimate the state as new observations become available. Despite the practical success of ensemble Kalman filters, theoretical understanding is hindered by the intricate dependence structure of the interacting particles. This paper investigates ensemble Kalman filters that incorporate an additional resampling step to break the dependency between particles. The new algorithm is amenable to a theoretical analysis that extends and improves upon those available for filters without resampling, while also performing well in numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Siam-Asa Journal on Uncertainty Quantification
Siam-Asa Journal on Uncertainty Quantification Mathematics-Statistics and Probability
CiteScore
3.70
自引率
0.00%
发文量
51
期刊介绍: SIAM/ASA Journal on Uncertainty Quantification (JUQ) publishes research articles presenting significant mathematical, statistical, algorithmic, and application advances in uncertainty quantification, defined as the interface of complex modeling of processes and data, especially characterizations of the uncertainties inherent in the use of such models. The journal also focuses on related fields such as sensitivity analysis, model validation, model calibration, data assimilation, and code verification. The journal also solicits papers describing new ideas that could lead to significant progress in methodology for uncertainty quantification as well as review articles on particular aspects. The journal is dedicated to nurturing synergistic interactions between the mathematical, statistical, computational, and applications communities involved in uncertainty quantification and related areas. JUQ is jointly offered by SIAM and the American Statistical Association.
期刊最新文献
The Bayesian Approach to Inverse Robin Problems Covariance Expressions for Multifidelity Sampling with Multioutput, Multistatistic Estimators: Application to Approximate Control Variates Parameter Inference Based on Gaussian Processes Informed by Nonlinear Partial Differential Equations Adaptive Multilevel Subset Simulation with Selective Refinement A Fully Parallelized and Budgeted Multilevel Monte Carlo Method and the Application to Acoustic Waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1