GridapTopOpt.jl:基于水平集拓扑优化的可扩展 Julia 工具箱

Zachary J. Wegert, Jordi Manyer, Connor Mallon, Santiago Badia, Vivien J. Challis
{"title":"GridapTopOpt.jl:基于水平集拓扑优化的可扩展 Julia 工具箱","authors":"Zachary J. Wegert, Jordi Manyer, Connor Mallon, Santiago Badia, Vivien J. Challis","doi":"arxiv-2405.10478","DOIUrl":null,"url":null,"abstract":"In this paper we present GridapTopOpt, an extendable framework for level\nset-based topology optimisation that can be readily distributed across a\npersonal computer or high-performance computing cluster. The package is written\nin Julia and uses the Gridap package ecosystem for parallel finite element\nassembly from arbitrary weak formulations of partial differential equation\n(PDEs) along with the scalable solvers from the Portable and Extendable Toolkit\nfor Scientific Computing (PETSc). The resulting user interface is intuitive and\neasy-to-use, allowing for the implementation of a wide range of topology\noptimisation problems with a syntax that is near one-to-one with the\nmathematical notation. Furthermore, we implement automatic differentiation to\nhelp mitigate the bottleneck associated with the analytic derivation of\nsensitivities for complex problems. GridapTopOpt is capable of solving a range\nof benchmark and research topology optimisation problems with large numbers of\ndegrees of freedom. This educational article demonstrates the usability and\nversatility of the package by describing the formulation and step-by-step\nimplementation of several distinct topology optimisation problems. The driver\nscripts for these problems are provided and the package source code is\navailable at https://github$.$com/zjwegert/GridapTopOpt.jl.","PeriodicalId":501256,"journal":{"name":"arXiv - CS - Mathematical Software","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GridapTopOpt.jl: A scalable Julia toolbox for level set-based topology optimisation\",\"authors\":\"Zachary J. Wegert, Jordi Manyer, Connor Mallon, Santiago Badia, Vivien J. Challis\",\"doi\":\"arxiv-2405.10478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present GridapTopOpt, an extendable framework for level\\nset-based topology optimisation that can be readily distributed across a\\npersonal computer or high-performance computing cluster. The package is written\\nin Julia and uses the Gridap package ecosystem for parallel finite element\\nassembly from arbitrary weak formulations of partial differential equation\\n(PDEs) along with the scalable solvers from the Portable and Extendable Toolkit\\nfor Scientific Computing (PETSc). The resulting user interface is intuitive and\\neasy-to-use, allowing for the implementation of a wide range of topology\\noptimisation problems with a syntax that is near one-to-one with the\\nmathematical notation. Furthermore, we implement automatic differentiation to\\nhelp mitigate the bottleneck associated with the analytic derivation of\\nsensitivities for complex problems. GridapTopOpt is capable of solving a range\\nof benchmark and research topology optimisation problems with large numbers of\\ndegrees of freedom. This educational article demonstrates the usability and\\nversatility of the package by describing the formulation and step-by-step\\nimplementation of several distinct topology optimisation problems. The driver\\nscripts for these problems are provided and the package source code is\\navailable at https://github$.$com/zjwegert/GridapTopOpt.jl.\",\"PeriodicalId\":501256,\"journal\":{\"name\":\"arXiv - CS - Mathematical Software\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Mathematical Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.10478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Mathematical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.10478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们介绍了 GridapTopOpt,这是一个可扩展的框架,用于基于水平集的拓扑优化,可随时在个人计算机或高性能计算集群上分布。该软件包由 Julia 编写,使用 Gridap 软件包生态系统从偏微分方程(PDE)的任意弱公式中进行并行有限元组装,同时使用科学计算便携式可扩展工具包(PETSc)中的可扩展求解器。由此产生的用户界面直观易用,允许使用与数学符号接近一一对应的语法实现各种拓扑优化问题。此外,我们还实现了自动微分,以帮助减轻复杂问题的敏感性分析推导所带来的瓶颈。GridapTopOpt 能够解决一系列具有大量自由度的基准和研究拓扑优化问题。这篇教育文章通过描述几个不同拓扑优化问题的制定和逐步实施,展示了软件包的可用性和通用性。本文提供了这些问题的驱动程序脚本,软件包源代码可在 https://github$.$com/zjwegert/GridapTopOpt.jl 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GridapTopOpt.jl: A scalable Julia toolbox for level set-based topology optimisation
In this paper we present GridapTopOpt, an extendable framework for level set-based topology optimisation that can be readily distributed across a personal computer or high-performance computing cluster. The package is written in Julia and uses the Gridap package ecosystem for parallel finite element assembly from arbitrary weak formulations of partial differential equation (PDEs) along with the scalable solvers from the Portable and Extendable Toolkit for Scientific Computing (PETSc). The resulting user interface is intuitive and easy-to-use, allowing for the implementation of a wide range of topology optimisation problems with a syntax that is near one-to-one with the mathematical notation. Furthermore, we implement automatic differentiation to help mitigate the bottleneck associated with the analytic derivation of sensitivities for complex problems. GridapTopOpt is capable of solving a range of benchmark and research topology optimisation problems with large numbers of degrees of freedom. This educational article demonstrates the usability and versatility of the package by describing the formulation and step-by-step implementation of several distinct topology optimisation problems. The driver scripts for these problems are provided and the package source code is available at https://github$.$com/zjwegert/GridapTopOpt.jl.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A prony method variant which surpasses the Adaptive LMS filter in the output signal's representation of input TorchDA: A Python package for performing data assimilation with deep learning forward and transformation functions HOBOTAN: Efficient Higher Order Binary Optimization Solver with Tensor Networks and PyTorch MPAT: Modular Petri Net Assembly Toolkit Enabling MPI communication within Numba/LLVM JIT-compiled Python code using numba-mpi v1.0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1