释放盈利潜力:通过贝叶斯优化超级趋势指标参数实现收益最大化

Abdul Rahman
{"title":"释放盈利潜力:通过贝叶斯优化超级趋势指标参数实现收益最大化","authors":"Abdul Rahman","doi":"arxiv-2405.14262","DOIUrl":null,"url":null,"abstract":"This paper investigates the potential of Bayesian optimization (BO) to\noptimize the atr multiplier and atr period -the parameters of the Supertrend\nindicator for maximizing trading profits across diverse stock datasets. By\nemploying BO, the thesis aims to automate the identification of optimal\nparameter settings, leading to a more data-driven and potentially more\nprofitable trading strategy compared to relying on manually chosen parameters.\nThe effectiveness of the BO-optimized Supertrend strategy will be evaluated\nthrough backtesting on a variety of stock datasets.","PeriodicalId":501478,"journal":{"name":"arXiv - QuantFin - Trading and Market Microstructure","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking Profit Potential: Maximizing Returns with Bayesian Optimization of Supertrend Indicator Parameters\",\"authors\":\"Abdul Rahman\",\"doi\":\"arxiv-2405.14262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the potential of Bayesian optimization (BO) to\\noptimize the atr multiplier and atr period -the parameters of the Supertrend\\nindicator for maximizing trading profits across diverse stock datasets. By\\nemploying BO, the thesis aims to automate the identification of optimal\\nparameter settings, leading to a more data-driven and potentially more\\nprofitable trading strategy compared to relying on manually chosen parameters.\\nThe effectiveness of the BO-optimized Supertrend strategy will be evaluated\\nthrough backtesting on a variety of stock datasets.\",\"PeriodicalId\":501478,\"journal\":{\"name\":\"arXiv - QuantFin - Trading and Market Microstructure\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Trading and Market Microstructure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.14262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Trading and Market Microstructure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.14262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了贝叶斯优化法(BO)优化超级趋势指标参数--atr乘数和atr周期--的潜力,以便在不同的股票数据集上实现交易利润最大化。通过运用贝叶斯优化,本论文旨在自动识别最佳参数设置,从而制定出更多数据驱动的交易策略,与依赖手动选择参数相比,可能更有利可图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unlocking Profit Potential: Maximizing Returns with Bayesian Optimization of Supertrend Indicator Parameters
This paper investigates the potential of Bayesian optimization (BO) to optimize the atr multiplier and atr period -the parameters of the Supertrend indicator for maximizing trading profits across diverse stock datasets. By employing BO, the thesis aims to automate the identification of optimal parameter settings, leading to a more data-driven and potentially more profitable trading strategy compared to relying on manually chosen parameters. The effectiveness of the BO-optimized Supertrend strategy will be evaluated through backtesting on a variety of stock datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal position-building strategies in Competition MarS: a Financial Market Simulation Engine Powered by Generative Foundation Model Logarithmic regret in the ergodic Avellaneda-Stoikov market making model A Financial Time Series Denoiser Based on Diffusion Model Simulation of Social Media-Driven Bubble Formation in Financial Markets using an Agent-Based Model with Hierarchical Influence Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1