马尔可夫链风险的渐近 CVaR 度量

Shivam Patel, Vivek Borkar
{"title":"马尔可夫链风险的渐近 CVaR 度量","authors":"Shivam Patel, Vivek Borkar","doi":"arxiv-2405.13513","DOIUrl":null,"url":null,"abstract":"Risk sensitive decision making finds important applications in current day\nuse cases. Existing risk measures consider a single or finite collection of\nrandom variables, which do not account for the asymptotic behaviour of\nunderlying systems. Conditional Value at Risk (CVaR) is the most commonly used\nrisk measure, and has been extensively utilized for modelling rare events in\nfinite horizon scenarios. Naive extension of existing risk criteria to\nasymptotic regimes faces fundamental challenges, where basic assumptions of\nexisting risk measures fail. We present a complete simulation based approach\nfor sequentially computing Asymptotic CVaR (ACVaR), a risk measure we define on\nlimiting empirical averages of markovian rewards. Large deviations theory,\ndensity estimation, and two-time scale stochastic approximation are utilized to\ndefine a 'tilted' probability kernel on the underlying state space to\nfacilitate ACVaR simulation. Our algorithm enjoys theoretical guarantees, and\nwe numerically evaluate its performance over a variety of test cases.","PeriodicalId":501128,"journal":{"name":"arXiv - QuantFin - Risk Management","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Asymptotic CVaR Measure of Risk for Markov Chains\",\"authors\":\"Shivam Patel, Vivek Borkar\",\"doi\":\"arxiv-2405.13513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Risk sensitive decision making finds important applications in current day\\nuse cases. Existing risk measures consider a single or finite collection of\\nrandom variables, which do not account for the asymptotic behaviour of\\nunderlying systems. Conditional Value at Risk (CVaR) is the most commonly used\\nrisk measure, and has been extensively utilized for modelling rare events in\\nfinite horizon scenarios. Naive extension of existing risk criteria to\\nasymptotic regimes faces fundamental challenges, where basic assumptions of\\nexisting risk measures fail. We present a complete simulation based approach\\nfor sequentially computing Asymptotic CVaR (ACVaR), a risk measure we define on\\nlimiting empirical averages of markovian rewards. Large deviations theory,\\ndensity estimation, and two-time scale stochastic approximation are utilized to\\ndefine a 'tilted' probability kernel on the underlying state space to\\nfacilitate ACVaR simulation. Our algorithm enjoys theoretical guarantees, and\\nwe numerically evaluate its performance over a variety of test cases.\",\"PeriodicalId\":501128,\"journal\":{\"name\":\"arXiv - QuantFin - Risk Management\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Risk Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.13513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Risk Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.13513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对风险敏感的决策在当前的日常使用中有着重要的应用。现有的风险度量考虑的是单一或有限的随机变量集合,并不考虑潜在系统的渐近行为。条件风险值(CVaR)是最常用的风险度量方法,已被广泛用于模拟罕见事件的无限期情景。在现有风险度量的基本假设失效的情况下,将现有风险标准天真地扩展到渐近机制面临着根本性的挑战。我们提出了一种基于模拟的完整方法,用于连续计算渐近 CVaR(ACVaR),这是我们根据马尔可夫报酬的经验平均值定义的一种风险度量。我们利用大偏差理论、密度估计和双时间尺度随机近似来定义底层状态空间上的 "倾斜 "概率核,以促进 ACVaR 仿真。我们的算法具有理论保证,我们在各种测试案例中对其性能进行了数值评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Asymptotic CVaR Measure of Risk for Markov Chains
Risk sensitive decision making finds important applications in current day use cases. Existing risk measures consider a single or finite collection of random variables, which do not account for the asymptotic behaviour of underlying systems. Conditional Value at Risk (CVaR) is the most commonly used risk measure, and has been extensively utilized for modelling rare events in finite horizon scenarios. Naive extension of existing risk criteria to asymptotic regimes faces fundamental challenges, where basic assumptions of existing risk measures fail. We present a complete simulation based approach for sequentially computing Asymptotic CVaR (ACVaR), a risk measure we define on limiting empirical averages of markovian rewards. Large deviations theory, density estimation, and two-time scale stochastic approximation are utilized to define a 'tilted' probability kernel on the underlying state space to facilitate ACVaR simulation. Our algorithm enjoys theoretical guarantees, and we numerically evaluate its performance over a variety of test cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DeFi Arbitrage in Hedged Liquidity Tokens Decomposition Pipeline for Large-Scale Portfolio Optimization with Applications to Near-Term Quantum Computing Research and Design of a Financial Intelligent Risk Control Platform Based on Big Data Analysis and Deep Machine Learning Credit Spreads' Term Structure: Stochastic Modeling with CIR++ Intensity Claims processing and costs under capacity constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1