通过 B2O3 原子层沉积和后退火稳定 LiNi0.83Co0.12Mn0.05O2 的表面和晶格结构

IF 3.2 Q2 CHEMISTRY, PHYSICAL Energy advances Pub Date : 2024-05-22 DOI:10.1039/D4YA00206G
Jiawei Li, Junren Xiang, Ge Yi, Zhijia Hu, Xiao Liu and Rong Chen
{"title":"通过 B2O3 原子层沉积和后退火稳定 LiNi0.83Co0.12Mn0.05O2 的表面和晶格结构","authors":"Jiawei Li, Junren Xiang, Ge Yi, Zhijia Hu, Xiao Liu and Rong Chen","doi":"10.1039/D4YA00206G","DOIUrl":null,"url":null,"abstract":"<p >The Ni-rich LiNi<small><sub><em>x</em></sub></small>Co<small><sub><em>y</em></sub></small>Mn<small><sub>1−<em>x</em>−<em>y</em></sub></small>O<small><sub>2</sub></small> cathode (<em>x</em> ≥ 0.6) shows weak rate capability due to its deleterious surface lithium impurities and lattice defects. Herein, uniform ultrathin B<small><sub>2</sub></small>O<small><sub>3</sub></small> coatings built by atomic layer deposition (ALD) are utilized to construct a B<small><sup>3+</sup></small> doped single-crystal LiNi<small><sub>0.83</sub></small>Co<small><sub>0.12</sub></small>Mn<small><sub>0.05</sub></small>O<small><sub>2</sub></small> (SC83) <em>via</em> post-annealing. LiOH is consumed due to reacting with B<small><sub>2</sub></small>O<small><sub>3</sub></small> during the B<small><sub>2</sub></small>O<small><sub>3</sub></small> ALD process, and then B<small><sub>2</sub></small>O<small><sub>3</sub></small> is transformed into B<small><sup>3+</sup></small> doping accompanied by the reduction of Li<small><sub>2</sub></small>CO<small><sub>3</sub></small> during the post-annealing. Surface and bulk characterization results show that B<small><sup>3+</sup></small> tends to diffuse into the bulk of the SC83 during the post-annealing, which expands the <em>a</em> and <em>c</em> axes and reduces the Li<small><sup>+</sup></small>/Ni<small><sup>2+</sup></small> mixing of the SC83. When the B<small><sup>3+</sup></small> content exceeds 0.54 wt%, B<small><sup>3+</sup></small> segregation occurs on the surface of the SC83, which decreases the electronic conductivity of the SC83. B<small><sup>3+</sup></small> doping at the content of 0.54 wt% gives the highest capacity of 177.6 mA h g<small><sup>−1</sup></small> at 1C rate. The B<small><sub>2</sub></small>O<small><sub>3</sub></small> ALD coupled with post-annealing builds a highly electronic and Li<small><sup>+</sup></small> conductive surface and bulk for the SC83, which is the key to the improvement of the rate capability.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00206g?page=search","citationCount":"0","resultStr":"{\"title\":\"Stabilization of the surface and lattice structure for LiNi0.83Co0.12Mn0.05O2via B2O3 atomic layer deposition and post-annealing†\",\"authors\":\"Jiawei Li, Junren Xiang, Ge Yi, Zhijia Hu, Xiao Liu and Rong Chen\",\"doi\":\"10.1039/D4YA00206G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The Ni-rich LiNi<small><sub><em>x</em></sub></small>Co<small><sub><em>y</em></sub></small>Mn<small><sub>1−<em>x</em>−<em>y</em></sub></small>O<small><sub>2</sub></small> cathode (<em>x</em> ≥ 0.6) shows weak rate capability due to its deleterious surface lithium impurities and lattice defects. Herein, uniform ultrathin B<small><sub>2</sub></small>O<small><sub>3</sub></small> coatings built by atomic layer deposition (ALD) are utilized to construct a B<small><sup>3+</sup></small> doped single-crystal LiNi<small><sub>0.83</sub></small>Co<small><sub>0.12</sub></small>Mn<small><sub>0.05</sub></small>O<small><sub>2</sub></small> (SC83) <em>via</em> post-annealing. LiOH is consumed due to reacting with B<small><sub>2</sub></small>O<small><sub>3</sub></small> during the B<small><sub>2</sub></small>O<small><sub>3</sub></small> ALD process, and then B<small><sub>2</sub></small>O<small><sub>3</sub></small> is transformed into B<small><sup>3+</sup></small> doping accompanied by the reduction of Li<small><sub>2</sub></small>CO<small><sub>3</sub></small> during the post-annealing. Surface and bulk characterization results show that B<small><sup>3+</sup></small> tends to diffuse into the bulk of the SC83 during the post-annealing, which expands the <em>a</em> and <em>c</em> axes and reduces the Li<small><sup>+</sup></small>/Ni<small><sup>2+</sup></small> mixing of the SC83. When the B<small><sup>3+</sup></small> content exceeds 0.54 wt%, B<small><sup>3+</sup></small> segregation occurs on the surface of the SC83, which decreases the electronic conductivity of the SC83. B<small><sup>3+</sup></small> doping at the content of 0.54 wt% gives the highest capacity of 177.6 mA h g<small><sup>−1</sup></small> at 1C rate. The B<small><sub>2</sub></small>O<small><sub>3</sub></small> ALD coupled with post-annealing builds a highly electronic and Li<small><sup>+</sup></small> conductive surface and bulk for the SC83, which is the key to the improvement of the rate capability.</p>\",\"PeriodicalId\":72913,\"journal\":{\"name\":\"Energy advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00206g?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ya/d4ya00206g\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ya/d4ya00206g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

富含镍的 LiNixCoyMn1-x-yO2 正极(x ≥ 0.6)因其有害的表面锂杂质和晶格缺陷而显示出较低的速率能力。在这里,利用原子层沉积(ALD)技术形成的均匀超薄 B2O3 涂层,通过后退火构建了掺杂 B3+ 的单晶 LiNi0.83Co0.12Mn0.05O2 (SC83)。在 B2O3 ALD 过程中,LiOH 与 B2O3 反应而被还原,然后在后退火过程中,B2O3 与 Li2CO3 的还原一起转化为 B3+掺杂。表面和块体表征显示,在后退火过程中,B3+趋向于扩散到 SC83 的块体中,从而扩大了 a 轴和 c 轴,降低了 SC83 的 Li+/Ni2+ 混合程度。当 B3+ 含量超过 0.54 wt.‰时,B3+ 会在 SC83 表面发生偏析,从而降低 SC83 的电子电导率。B3+ 掺杂含量为 0.54 重量.‰时,在 1C 速率下的容量最高,为 177.6 mAh/g。B2O3 ALD 与后退火相结合,为 SC83 构建了一个高电子和 Li+ 导电的表面和块体,这是提高速率能力的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stabilization of the surface and lattice structure for LiNi0.83Co0.12Mn0.05O2via B2O3 atomic layer deposition and post-annealing†

The Ni-rich LiNixCoyMn1−xyO2 cathode (x ≥ 0.6) shows weak rate capability due to its deleterious surface lithium impurities and lattice defects. Herein, uniform ultrathin B2O3 coatings built by atomic layer deposition (ALD) are utilized to construct a B3+ doped single-crystal LiNi0.83Co0.12Mn0.05O2 (SC83) via post-annealing. LiOH is consumed due to reacting with B2O3 during the B2O3 ALD process, and then B2O3 is transformed into B3+ doping accompanied by the reduction of Li2CO3 during the post-annealing. Surface and bulk characterization results show that B3+ tends to diffuse into the bulk of the SC83 during the post-annealing, which expands the a and c axes and reduces the Li+/Ni2+ mixing of the SC83. When the B3+ content exceeds 0.54 wt%, B3+ segregation occurs on the surface of the SC83, which decreases the electronic conductivity of the SC83. B3+ doping at the content of 0.54 wt% gives the highest capacity of 177.6 mA h g−1 at 1C rate. The B2O3 ALD coupled with post-annealing builds a highly electronic and Li+ conductive surface and bulk for the SC83, which is the key to the improvement of the rate capability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
期刊最新文献
Back cover Fabrication methods, pseudocapacitance characteristics, and integration of conjugated conducting polymers in electrochemical energy storage devices Inside back cover Back cover Competing effects of low salt ratio on electrochemical performance and compressive modulus of PEO-LiTFSI/LLZTO composite electrolytes†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1