Onome Ejeromedoghene, Khadijat Olabisi Abdulwahab, Inemesit Asukwo Udofia, Moses Kumi and Ayorinde Olufunke Nejo
{"title":"评估硫化锌异质结构作为将二氧化碳转化为有价值化学品和清洁能源的催化剂的效果","authors":"Onome Ejeromedoghene, Khadijat Olabisi Abdulwahab, Inemesit Asukwo Udofia, Moses Kumi and Ayorinde Olufunke Nejo","doi":"10.1039/D4YA00202D","DOIUrl":null,"url":null,"abstract":"<p >There are significant concerns about global warming and the energy crisis due to the rise in atmospheric carbon dioxide (CO<small><sub>2</sub></small>) concentration and the depletion of fossil fuels. Converting CO<small><sub>2</sub></small> into organic molecules using the abundant solar energy would be a quick fix that would address both issues. Excess CO<small><sub>2</sub></small> is a major contributor to the greenhouse effect, which leads to global warming, extreme weather patterns, and a host of other environmental challenges. To tackle these problems, scientists are exploring novel approaches to adsorb CO<small><sub>2</sub></small>, transform it into useful products, and then release it back into the atmosphere. Semiconductor materials play a crucial role in CO<small><sub>2</sub></small> reduction. Among these materials, zinc sulfide (ZnS) and doped ZnS have gained significant attention for the potential catalytic transformation of CO<small><sub>2</sub></small> into useful compounds. The semiconductor properties of ZnS and its derivatives make them particularly well-suited for this purpose. The present review provides a summary of the recent progress in the development of strategies for fabricating ZnS-based heterostructures with functional properties for CO<small><sub>2</sub></small> reduction. The mechanism of CO<small><sub>2</sub></small> conversion was also addressed with new insights into computational modelling. Lastly, future outlook on the development of catalytic ZnS-based materials for CO<small><sub>2</sub></small> reduction is provided.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 6","pages":" 1196-1221"},"PeriodicalIF":3.2000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00202d?page=search","citationCount":"0","resultStr":"{\"title\":\"Evaluation of zinc sulfide heterostructures as catalysts for the transformation of CO2 into valuable chemicals and clean energy generation\",\"authors\":\"Onome Ejeromedoghene, Khadijat Olabisi Abdulwahab, Inemesit Asukwo Udofia, Moses Kumi and Ayorinde Olufunke Nejo\",\"doi\":\"10.1039/D4YA00202D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >There are significant concerns about global warming and the energy crisis due to the rise in atmospheric carbon dioxide (CO<small><sub>2</sub></small>) concentration and the depletion of fossil fuels. Converting CO<small><sub>2</sub></small> into organic molecules using the abundant solar energy would be a quick fix that would address both issues. Excess CO<small><sub>2</sub></small> is a major contributor to the greenhouse effect, which leads to global warming, extreme weather patterns, and a host of other environmental challenges. To tackle these problems, scientists are exploring novel approaches to adsorb CO<small><sub>2</sub></small>, transform it into useful products, and then release it back into the atmosphere. Semiconductor materials play a crucial role in CO<small><sub>2</sub></small> reduction. Among these materials, zinc sulfide (ZnS) and doped ZnS have gained significant attention for the potential catalytic transformation of CO<small><sub>2</sub></small> into useful compounds. The semiconductor properties of ZnS and its derivatives make them particularly well-suited for this purpose. The present review provides a summary of the recent progress in the development of strategies for fabricating ZnS-based heterostructures with functional properties for CO<small><sub>2</sub></small> reduction. The mechanism of CO<small><sub>2</sub></small> conversion was also addressed with new insights into computational modelling. Lastly, future outlook on the development of catalytic ZnS-based materials for CO<small><sub>2</sub></small> reduction is provided.</p>\",\"PeriodicalId\":72913,\"journal\":{\"name\":\"Energy advances\",\"volume\":\" 6\",\"pages\":\" 1196-1221\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00202d?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ya/d4ya00202d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ya/d4ya00202d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Evaluation of zinc sulfide heterostructures as catalysts for the transformation of CO2 into valuable chemicals and clean energy generation
There are significant concerns about global warming and the energy crisis due to the rise in atmospheric carbon dioxide (CO2) concentration and the depletion of fossil fuels. Converting CO2 into organic molecules using the abundant solar energy would be a quick fix that would address both issues. Excess CO2 is a major contributor to the greenhouse effect, which leads to global warming, extreme weather patterns, and a host of other environmental challenges. To tackle these problems, scientists are exploring novel approaches to adsorb CO2, transform it into useful products, and then release it back into the atmosphere. Semiconductor materials play a crucial role in CO2 reduction. Among these materials, zinc sulfide (ZnS) and doped ZnS have gained significant attention for the potential catalytic transformation of CO2 into useful compounds. The semiconductor properties of ZnS and its derivatives make them particularly well-suited for this purpose. The present review provides a summary of the recent progress in the development of strategies for fabricating ZnS-based heterostructures with functional properties for CO2 reduction. The mechanism of CO2 conversion was also addressed with new insights into computational modelling. Lastly, future outlook on the development of catalytic ZnS-based materials for CO2 reduction is provided.