{"title":"用于活细胞无标记成像的高分辨率相位对比显微系统","authors":"Kentaro Shimasaki, Yuko Okemoto-Nakamura, Saito Kyoko, Masayoshi Fukasawa, Kaoru Katoh, Kentaro Hanada","doi":"10.1247/csf.24018","DOIUrl":null,"url":null,"abstract":"</p><p>Cell biologists have long sought the ability to observe intracellular structures in living cells without labels. This study presents procedures to adjust a commercially available apodized phase-contrast (APC) microscopy system for better visualizing the dynamic behaviors of various subcellular organelles in living cells. By harnessing the versatility of this technique to capture sequential images, we could observe morphological changes in cellular geometry after virus infection in real time without probes or invasive staining. The tune-up APC microscopy system is a highly efficient platform for simultaneously observing the dynamic behaviors of diverse subcellular structures with exceptional resolution.</p><p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A high-resolution phase-contrast microscopy system for label-free imaging in living cells\",\"authors\":\"Kentaro Shimasaki, Yuko Okemoto-Nakamura, Saito Kyoko, Masayoshi Fukasawa, Kaoru Katoh, Kentaro Hanada\",\"doi\":\"10.1247/csf.24018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"</p><p>Cell biologists have long sought the ability to observe intracellular structures in living cells without labels. This study presents procedures to adjust a commercially available apodized phase-contrast (APC) microscopy system for better visualizing the dynamic behaviors of various subcellular organelles in living cells. By harnessing the versatility of this technique to capture sequential images, we could observe morphological changes in cellular geometry after virus infection in real time without probes or invasive staining. The tune-up APC microscopy system is a highly efficient platform for simultaneously observing the dynamic behaviors of diverse subcellular structures with exceptional resolution.</p><p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1247/csf.24018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1247/csf.24018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A high-resolution phase-contrast microscopy system for label-free imaging in living cells
Cell biologists have long sought the ability to observe intracellular structures in living cells without labels. This study presents procedures to adjust a commercially available apodized phase-contrast (APC) microscopy system for better visualizing the dynamic behaviors of various subcellular organelles in living cells. By harnessing the versatility of this technique to capture sequential images, we could observe morphological changes in cellular geometry after virus infection in real time without probes or invasive staining. The tune-up APC microscopy system is a highly efficient platform for simultaneously observing the dynamic behaviors of diverse subcellular structures with exceptional resolution.